Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

More specifically, any part of a body occupying a region картинка 202in three‐dimensional space can experience forces acting on the region's bounding surface We account for these forces by introducing tractions having dimension force - фото 203. We account for these forces by introducing tractions, having dimension force per unit area:

Consider such a region as drawn in Figure 26 At any point where the bounding - фото 204

Consider such a region, as drawn in Figure 2.6. At any point where the bounding surface картинка 205is smooth and orientable, there exists an outward pointing unit normal vector картинка 206that is orthogonal to the plane tangent to картинка 207at that point. The stress tensor is a linear transformation картинка 208such that the vector field картинка 209gives the traction at any point on картинка 210. The vector field картинка 211need not be collinear with картинка 212: The force per unit area acting at a point on The Mathematics of Fluid Flow Through Porous Media - изображение 213can have a component tangent to the surface. The total force acting on The Mathematics of Fluid Flow Through Porous Media - изображение 214is

The Mathematics of Fluid Flow Through Porous Media - изображение 215

having dimension картинка 216.

Four additional remarks help clarify the nature of the stress tensor.

1 With respect to any orthonormal basis , any linear transformation has a matrix representation with entries . For , this representation has the form Figure 2.6 A region in three‐dimensional space with unit outward normal vector field and the traction acting on the boundary .

2 In accordance with Exercise 2.4, with respect to any orthonormal basis, the diagonal entries represent forces per unit area acting in directions perpendicular to faces that are orthogonal to , , and , respectively. We refer to these entries as tensile stresses when they pull in the same direction as and as compressive stresses when they push in the opposite direction—namely inward—from . The off‐diagonal entries , where , are shear stresses.

3 A classic theorem in continuum mechanics reduces the angular momentum balance, which we do not discuss here, to the identity with respect to any orthonormal basis. In other words, the stress tensor is symmetric. See [4, Chapter 4] for details.

4 With respect to an orthonormal basis , the divergence of the tensor‐valued function has the following representation as a vector‐valued function:

Exercise 2.4 Consider the action of картинка 217 on each unit basis vector картинка 218, The Mathematics of Fluid Flow Through Porous Media - изображение 219 , to examine the forces acting on faces of a cube of material whose edges lie parallel to the Cartesian coordinate axes defined by The Mathematics of Fluid Flow Through Porous Media - изображение 220 , as drawn in Figure 2.7. Justify the assertion that картинка 221 represents the картинка 222 th component of the force per unit area acting on surfaces that lie perpendicular to Figure 27 A cube of material illustrating the interpretations of entries - фото 223.

Figure 27 A cube of material illustrating the interpretations of entries of - фото 224

Figure 2.7 A cube of material illustrating the interpretations of entries of the stress tensor matrix with respect to an orthonormal basis, from [4, page 109].

The differential momentum balance (2.9)generalizes Newton's second law of motion. The left side of Eq. (2.9)is proportional to mass acceleration while the right side is proportional to a sum of forces Thus - фото 225acceleration, while the right side is proportional to a sum of forces. Thus, Eq. (2.9)has the form

Based on this parallel fluid mechanicians call the inertial terms If we view - фото 226

Based on this parallel, fluid mechanicians call

the inertial terms If we view the momentum balance as an equation for the - фото 227

the inertial terms.

If we view the momentum balance as an equation for the velocity картинка 228, the inertial terms make the momentum balance a nonlinear PDE. In many applications to fluid mechanics, this nonlinearity wreaks mathematical havoc. Mercifully, for reasons examined in Chapter 3, the inertial nonlinearity plays a negligible role in the most commonly used models of porous‐media flow. However, this observation furnishes scant grounds for complacency. As subsequent chapters demonstrate, other types of nonlinearity play prominent roles in the fluid mechanics of porous media.

2.3 Constitutive Relationships

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x