Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
The Mathematics of Fluid Flow Through Porous Media - изображение 262

In problems for which inertial terms are negligible, for example when the fluid is at rest, this equation reduces to

(2.12) The Mathematics of Fluid Flow Through Porous Media - изображение 263

Exercise 2.5 Integrate the third component of Eq . (2.12) to obtain the hydrostatic equation ,

(2.13) Thus pressure increases linearly with depth in an ideal fluid at rest - фото 264

Thus pressure increases linearly with depth in an ideal fluid at rest .

Equation (2.13)closely models the pressure of Earth's atmosphere. At sea level, the pressure of the atmosphere fluctuates around The Mathematics of Fluid Flow Through Porous Media - изображение 265Pa, which is the definition of a common unit of measurement, 1 atmosphere, abbreviated as 1 atm.

An extension of the ideal fluid stress provides a more realistic constitutive relationship for many fluids. An incompressible Newtonian fluidis a material for which

(2.14) The Mathematics of Fluid Flow Through Porous Media - изображение 266

Here, stands for the stretching tensor defined as With respect to an orthonormal - фото 267stands for the stretching tensor, defined as

With respect to an orthonormal basis the th entry of the matrix representation - фото 268

With respect to an orthonormal basis, the картинка 269th entry of the matrix representation of картинка 270is картинка 271, and картинка 272denotes the transposeof картинка 273, whose картинка 274th entry is картинка 275.

The coefficient картинка 276appearing in Eq. (2.14)is the dynamic viscosity, a nonnegative function of space and time having dimension The Mathematics of Fluid Flow Through Porous Media - изображение 277. A common unit for measuring dynamic viscosity is the centipoise, abbreviated cP and named after the French physicist Jean Léonard Marie Poiseuille. In SI units, The Mathematics of Fluid Flow Through Porous Media - изображение 278 The Mathematics of Fluid Flow Through Porous Media - изображение 279, which is approximately the viscosity of water at a temperature of The Mathematics of Fluid Flow Through Porous Media - изображение 280C and a pressure of 1 atm. For comparison, the viscosity of air at these conditions is The Mathematics of Fluid Flow Through Porous Media - изображение 281cP.

Exercise 2.6 Find the correct pronunciation of “Poiseuille.”

2.3.3 The Navier–Stokes Equation

Exercise 2.7 Substitute the constitutive relationship (2.14) into the momentum balance and assume that gravity is negligible (for example, in a shallow horizontal flow) to derive the Navier–Stokes equation :

(2.15) Here is the kinematic viscosity having dimension - фото 282

Here , картинка 283 is the kinematic viscosity, having dimension картинка 284 , and has the following representation with respect to an orthonormal basis Sir - фото 285 has the following representation with respect to an orthonormal basis :

Sir George Gabriel Stokes was an Irishborn Cambridge professor who made - фото 286

Sir George Gabriel Stokes was an Irish‐born Cambridge professor who made extraordinary contributions to mathematical physics. Claude‐Louis Navier was a French mechanical engineer and professor of mathematics in the early nineteenth century.

Exercise 2.8 Find the correct pronunciation of “Navier.”

Owing largely to mathematical difficulties associated with the inertial terms, the Navier–Stokes equation remains a source of some of the most refractory unsolved problems in mathematics. Proving the existence and smoothness of solutions under general conditions remains one of six unsolved Millennial Prize Problems identified in 2000 by the Clay Institute for Mathematics [79].

To gauge the importance of inertial effects in specific problems, it is useful to cast Eq. (2.15)in terms of dimensionless variables—that is, variables having physical dimension 1. This technique filters out subjective effects associated with the analyst's choice of measurement units, mentioned in Section 1.3.

For concreteness, consider the flow of an incompressible Newtonian fluid in an infinite spatial domain surrounding a solid sphere having radius картинка 287, as drawn in Figure 2.9. We examine a simplified version of this flow, called the Stokes problem, in Section 2.4. Assume that, as distance from the sphere increases, картинка 288. Using the radius картинка 289and the far‐field fluid speed as scaling parameters define the following dimensionless variables By the - фото 290as scaling parameters, define the following dimensionless variables:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x