Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For a fluid velocity of the form (2.17), we need to only solve the first coordinate equation,

(2.18) Since the second term on the right side of Eq 218is independent of by Eq - фото 316

Since the second term on the right side of Eq. (2.18)is independent of картинка 317by Eq. (2.17), so is the pressure gradient картинка 318. It follows that картинка 319is constant, and hence varies linearly along the tube Equation 218therefore reduces to the - фото 320varies linearly along the tube. Equation (2.18)therefore reduces to the following ordinary differential equation:

Exercise 211 Verify that the general solution to this equation has the form - фото 321

Exercise 2.11 Verify that the general solution to this equation has the form

where stands for the natural logarithm and and - фото 322

where картинка 323 stands for the natural logarithm and картинка 324 and картинка 325 denote arbitrary constants .

For boundary conditions, we assume no slip at the wall of the tube and insist that the velocity along the axis of the tube remain finite:

(2.19) (2.20) The Mathematics of Fluid Flow Through Porous Media - изображение 326

The condition (2.20)requires that Exercise 212 Impose the noslip boundary condition 219 to show that - фото 327.

Exercise 2.12 Impose the no‐slip boundary condition (2.19) to show that

(2.21) Equation 221indicates that the fluid velocity has a parabolic profile with - фото 328

Equation (2.21)indicates that the fluid velocity has a parabolic profile, with the velocity reaching its maximum magnitude along the axis of the tube and vanishing at the walls. We encounter this profile again in Section 5.1.2, in discussing why solutes spread as they move through the microscopic channels of a porous medium.

2.4.2 The Stokes Problem

Another classic problem derived from the Navier–Stokes equation examines the slow, incompressible, viscous flow of a fluid around a solid sphere of radius картинка 329, as drawn in Figure 2.9. In the case of steady flow when the Reynolds number is much smaller than 1, we neglect the inertial terms, arriving at the following mass and momentum balance equations:

The Mathematics of Fluid Flow Through Porous Media - изображение 330

On the surface of the solid sphere, the velocity vanishes, while as one moves far away from the sphere the velocity approaches a uniform far‐field value:

In 1851 in a tour de force of vector calculus Stokes 139 published the - фото 331

In 1851, in a tour de force of vector calculus, Stokes [139] published the solution to this boundary‐value problem, along with an expression for the total viscous force exerted on the sphere: This force is called the Stokes drag For our purposes we need not examine - фото 332. This force is called the Stokes drag.

For our purposes, we need not examine the calculation of картинка 333in detail. Instead, we use a simpler dimensional analysis, exploiting concepts from elementary linear algebra, to deduce the functional form of the drag force. Since the only parameters in the boundary‐value problem are картинка 334, картинка 335, and картинка 336, any solution to the problem of calculating The Mathematics of Fluid Flow Through Porous Media - изображение 337defines a relationship of the form

(2.22) The Mathematics of Fluid Flow Through Porous Media - изображение 338

for some function картинка 339. By a theorem widely attributed to American physicist Edgar Buckingham [31], this relationship, involving variables that have physical dimensions, implies the existence of an equivalent relationship

The Mathematics of Fluid Flow Through Porous Media - изображение 340

involving only dimensionless variables The Mathematics of Fluid Flow Through Porous Media - изображение 341 Appendix Creviews this theorem.

Thus, we seek relationship equivalent to Eq. (2.22), involving only dimensionless variables formed using powers of the dimensional variables The Mathematics of Fluid Flow Through Porous Media - изображение 342. For any such variable, denoted generically by The Mathematics of Fluid Flow Through Porous Media - изображение 343,

(2.23) The Mathematics of Fluid Flow Through Porous Media - изображение 344

for exponents The Mathematics of Fluid Flow Through Porous Media - изображение 345to be determined. Equation (2.23)implies that the exponents of картинка 346, картинка 347, and картинка 348must vanish, yielding the following homogeneous linear system for картинка 349, картинка 350, and 224 Exercise 213 Rowreduce - фото 351, and 224 Exercise 213 Rowreduce Eq 224 to deduce that - фото 352:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x