Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
The Mathematics of Fluid Flow Through Porous Media - изображение 414 Figure 213 Conceptual plot of REVaveraged volume fraction versus radius of - фото 415

Figure 2.13 Conceptual plot of REV‐averaged volume fraction versus radius of averaging window, showing how averaged values can stabilize for a range of averaging radii.

If we account for all of the volume in the continuum, then the volume fractions obey the constraint

The Mathematics of Fluid Flow Through Porous Media - изображение 416

In this case, we define the true densityof constituent The Mathematics of Fluid Flow Through Porous Media - изображение 417as

The Mathematics of Fluid Flow Through Porous Media - изображение 418

The bulk density картинка 419has dimension (mass of картинка 420) картинка 421(volume of continuum), while the true density картинка 422has dimension (mass of картинка 423) картинка 424(volume of картинка 425).

In the second category of multiconstituent continua, segregation of constituents is observable only at molecular length scales, so continuum‐scale interfaces between the constituents do not exist. Saltwater is an example: The particles of картинка 426, картинка 427, and картинка 428O are segregated at length scales of roughly картинка 429m, far smaller than the continuum scale. For such multispeciesor misciblemulticonstituent continua, the concept of a continuum‐scale volume fraction does not apply.

With this framework in place, we define several functions associated with the continuum. The mixture densityis

The Mathematics of Fluid Flow Through Porous Media - изображение 430

which we can write for multiphase continua as follows:

The Mathematics of Fluid Flow Through Porous Media - изображение 431

The mass‐weighted or barycentric velocityis

The Mathematics of Fluid Flow Through Porous Media - изображение 432

Sometimes it is useful to refer to the barycentric derivative, which for a differentiable function has the form 226 Finally the diffusion velocityof constituent - фото 433has the form

(2.26) Finally the diffusion velocityof constituent is 227 - фото 434

Finally, the diffusion velocityof constituent The Mathematics of Fluid Flow Through Porous Media - изображение 435is

(2.27) The Mathematics of Fluid Flow Through Porous Media - изображение 436

Exercise 2.14 Show that

The Mathematics of Fluid Flow Through Porous Media - изображение 437

2.5.3 Multiconstituent Mass Balance

The balance laws for single continua extend to multiconstituent continua in a manner that allows for exchanges of mass, momentum, and other conserved quantities among the constituents.

For the differential mass balance, the extension has the following form:

(2.28) To see how this equation allows for exchanges of mass among constituents - фото 438

To see how this equation allows for exchanges of mass among constituents, rewrite it as follows:

(2.29) The Mathematics of Fluid Flow Through Porous Media - изображение 439

where

(2.30) The Mathematics of Fluid Flow Through Porous Media - изображение 440

Mathematically, this new form amounts to a trivial reformulation. Physically, it captures the exchange of mass into each constituent картинка 441from other constituents, at a rate given by the mass exchange rate картинка 442, having dimension картинка 443. Mass exchange can occur via several mechanisms:

Phase changes, such as melting, freezing, evaporation, and condensation;

Interphase mass transfer, such as dissolution or adsorption;

Chemical reactions, which transform molecular species into different molecular species.

For multiphase continua, Eq. (2.29)has an equivalent form:

The Mathematics of Fluid Flow Through Porous Media - изображение 444

again subject to the constraint (2.30).

It is common to write the multiconstituent mass balance in terms of constituent mass fractions, defined as The Mathematics of Fluid Flow Through Porous Media - изображение 445and having dimension (mass of картинка 446) картинка 447(total mass). Doing so yields the following equivalent forms for the mass balance equation for each constituent The Mathematics of Fluid Flow Through Porous Media - изображение 448, all subject to the constraint (2.30):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x