Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.24) Exercise 213 Rowreduce Eq 224 to deduce that is a free variable for - фото 353

Exercise 2.13 Row‐reduce Eq . (2.24) to deduce that The Mathematics of Fluid Flow Through Porous Media - изображение 354 is a free variable, for which one may choose any value, and The Mathematics of Fluid Flow Through Porous Media - изображение 355.

Arbitrarily picking The Mathematics of Fluid Flow Through Porous Media - изображение 356yields the single dimensionless variable The Mathematics of Fluid Flow Through Porous Media - изображение 357; all other dimensionless variables for this problem must be multiples of this product.

The calculation in Exercise 2.13 shows that any relationship equivalent to Eq. (2.22)but involving only dimensionless variables has the form картинка 358. Solutions to such an equation are constant values of картинка 359. Setting The Mathematics of Fluid Flow Through Porous Media - изображение 360for a generic constant The Mathematics of Fluid Flow Through Porous Media - изображение 361, we conclude that Stokes drag has the form

(2.25) The Mathematics of Fluid Flow Through Porous Media - изображение 362

This result is consistent with that of Stokes's original calculation, except that we have an undetermined constant картинка 363instead of картинка 364.

To anticipate the constitutive theory of flows in porous media, discussed in Chapter 3, observe that the drag on the solid particle in Eq. (2.25)is proportional to the fluid velocity and the fluid viscosity, and it involves a geometric factor картинка 365. This result suffices for the derivation pursued in Section 3.1.

2.5 Multiconstituent Continua

The mechanics discussed so far cannot distinguish among the various solid and fluid bodies that make up a porous medium. To accommodate mixtures of different types of materials, such as the solid and fluid in a porous medium, we must adopt additional physics.

2.5.1 Constituents

The first step in extending the mechanics of single continua is to consider a set of bodies The Mathematics of Fluid Flow Through Porous Media - изображение 366, The Mathematics of Fluid Flow Through Porous Media - изображение 367, called constituents. For example, in a porous medium, rock and water can be constituents. We postulate that each spatial point The Mathematics of Fluid Flow Through Porous Media - изображение 368can be occupied by particles from every constituent. In this sense, the bodies The Mathematics of Fluid Flow Through Porous Media - изображение 369constitute overlapping continua. This postulate clearly fails at scales of observation at which the constituents appear to occupy distinct regions of space. But for many natural porous media found in Earth's subsurface, the postulate yields reasonable models at scales of observation greater than about картинка 370m.

Paralleling the development for single continua, for each constituent картинка 371, we fix a reference configuration that assigns, to each particle in картинка 372, a point картинка 373in three‐dimensional space. The vector картинка 374serves as a label for the particle. We denote by картинка 375the region in three‐dimensional Euclidean space occupied by all of these vectors for the constituent картинка 376.

We also associate with each constituent картинка 377a one‐parameter family картинка 378of mappings from картинка 379to three‐dimensional Euclidean space such that:

1 The vector , having dimension L, gives the spatial position of the particle at time , as illustrated in Figure 2.11.

2 At each time , the function of the coordinate is one‐to‐one, onto, and continuously differentiable with respect to .

3 Also at each time , has continuously differentiable inverse such that . That is, tells us which particle from constituent occupies the spatial position at time .

4 For each value of the coordinate , the function is twice continuously differentiable with respect to .

We call the deformationof constituent Figure 211 - фото 380the deformationof constituent Figure 211 A reference configuration and the deformation at times - фото 381.

Figure 211 A reference configuration and the deformation at times and - фото 382

Figure 2.11 A reference configuration and the deformation at times картинка 383and картинка 384for constituent картинка 385in a multiconstituent continuum.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x