Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As in the single‐continuum case, the referentialor Lagrangian velocityof The Mathematics of Fluid Flow Through Porous Media - изображение 386is

The Mathematics of Fluid Flow Through Porous Media - изображение 387

To find the velocity of constituent картинка 388at a fixed spatial point The Mathematics of Fluid Flow Through Porous Media - изображение 389at time The Mathematics of Fluid Flow Through Porous Media - изображение 390, we first find the particle The Mathematics of Fluid Flow Through Porous Media - изображение 391that occupies картинка 392at time then compute the spatialor Eulerian velocity We associate with each - фото 393, then compute the spatialor Eulerian velocity:

We associate with each constituent a material derivative which gives the time - фото 394

We associate with each constituent картинка 395a material derivative, which gives the time rate of change following a fixed particle картинка 396. For functions of картинка 397, the material derivative is simply the partial derivative with respect to For functions of an application of the chain rule similar to that - фото 398:

For functions of an application of the chain rule similar to that employed in - фото 399

For functions of an application of the chain rule similar to that employed in Section 21for - фото 400, an application of the chain rule similar to that employed in Section 2.1for simple continua yields

252 Densities and Volume Fractions As with single continua we assign to - фото 401

2.5.2 Densities and Volume Fractions

As with single continua, we assign to each constituent картинка 402a mass density картинка 403such that the mass of the constituent in any measurable region The Mathematics of Fluid Flow Through Porous Media - изображение 404of three‐dimensional space at time The Mathematics of Fluid Flow Through Porous Media - изображение 405is

The Mathematics of Fluid Flow Through Porous Media - изображение 406

Engineers call картинка 407the bulk densityof constituent картинка 408; it gives the mass of the constituent per unit of total volume in the continuum.

In the context of porous media, this last observation prompts a discussion of two different categories of multiconstituent continua. The first, which we call multiphase continuaor immiscible continua, includes materials for which microscopic observation reveals continuum‐scale interfaces that affect the mechanics. Figure 2.12illustrates the idea schematically. An example of this type of continuum is water‐saturated sandstone. In this porous medium, there exists a continuum‐scale interface between the rock and the fluid, but in most sandstones, the geometry of the interface is observable only at scales smaller than about картинка 409m.

One way to think of this type of continuum is to regard macroscopic observation as a spatial averaging process. In this view, at each point in space we replace detailed properties of the material with properties averaged over a representative elementary volume( REV) having a characteristic radius, as Figure 2.12illustrates [121]. In the case of water‐saturated sandstone, if the radius of the REV ranges over values comparable to typical rock‐grain diameters, then the fraction of the REV occupied by fluid oscillates as the radius increases. The oscillation arises because, over this range of radii, the inclusion or exclusion of individual grains results in significant changes in the value of the average.

Figure 212 Sketch of a fluidsaturated porous medium showing three possible - фото 410

Figure 2.12 Sketch of a fluid‐saturated porous medium showing three possible representative elementary volumes.

For the concept of a multiconstituent continuum to furnish a useful model of the porous medium, there must exist a range of REV radii—typically exceeding several rock‐grain diameters—in which the fraction of the REV occupied by fluid exhibits a stable value, as drawn in Figure 2.13. Henceforth, we assume that the porous medium possesses a range of REV radii satisfying this condition. We also assume that this range includes radii that are small compared with the macroscopic scale of observation, so that it is reasonable to model the porous medium as a set of overlapping continua.

Under this assumption, we assign to each constituent картинка 411a volume fraction картинка 412. This function gives the fraction of any region The Mathematics of Fluid Flow Through Porous Media - изображение 413of three‐dimensional space occupied by material from the constituent as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x