Mantle Convection and Surface Expressions

Здесь есть возможность читать онлайн «Mantle Convection and Surface Expressions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mantle Convection and Surface Expressions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mantle Convection and Surface Expressions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales.
Mantle Convection and Surface Expressions Volume highlights include:
Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Mantle Convection and Surface Expressions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mantle Convection and Surface Expressions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

104 Gaffney, E.S. (1972). Crystal field effects in mantle minerals. Phys. Earth Planet. Inter., 6, 385–390. https://doi.org/10.1016/0031‐9201(72)90062‐3

105 Gaffney, E.S., & Anderson, D.L. (1973). Effect of low‐spin Fe2+ on the composition of the lower mantle. J. Geophys. Res., 78, 7005–7014. https://doi.org/10.1029/JB078i029p07005

106 Garnero, E.J., McNamara, A.K., & Shim, S.‐H. (2016). Continent‐sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci., 9, 481–489. https://doi.org/10.1038/ngeo2733

107 Giannozzi, P., de Gironcoli, S., Pavone, P., & Baroni, S. (1991). Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 43, 7231–7242. https://doi.org/10.1103/PhysRevB.43.7231

108 Giura, P., Paulatto, L., He, F., Lobo, R.P.S.M., Bosak, A., Calandrini, E., et al. (2019). Multiphonon anharmonicity of MgO. Phys. Rev. B, 99, 220304. https://doi.org/10.1103/PhysRevB.99.220304

109 Glazyrin, K., Boffa Ballaran, T., Frost, D.J., McCammon, C., Kantor, A., Merlini, M., et al. (2014). Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet. Sci. Lett., 393, 182–186. https://doi.org/10.1016/j.epsl.2014.01.056

110 Gréaux, S., Irifune, T., Higo, Y., Tange, Y., Arimoto, T., Liu, Z., & Yamada, A. (2019). Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature, 565, 218–221. https://doi.org/10.1038/s41586‐018‐0816‐5

111 Gréaux, S., Kono, Y., Wang, Y., Yamada, A., Zhou, C., Jing, Z., et al. (2016). Sound velocities of aluminum‐bearing stishovite in the mantle transition zone. Geophys. Res. Lett., 43, 4239–4246. https://doi.org/10.1002/2016GL068377

112 Gwanmesia, G.D., Liebermann, R.C., & Guyot, F. (1990). Hot‐pressing and characterization of polycrystals of β‐Mg2SiO4, for acoustic velocity measurements. Geophys. Res. Lett., 17, 1331–1334. https://doi.org/10.1029/GL017i009p01331

113 Haussühl, S. (2007). Physical Properties of Crystals: An Introduction. Wiley‐VCH, Weinheim. https://doi.org/10.1002/9783527621156

114 Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., A65, 349–354. https://doi.org/10.1088/0370‐1298/65/5/307

115 Hirose, K., Fei, Y., Ma, Y., & Mao, H.‐K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397, 53–56. https://doi.org/10.1038/16225

116 Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett., 237, 239–251. https://doi.org/10.1016/j.epsl.2005.06.035

117 Hofmann, A.W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229. https://doi.org/10.1038/385219a0

118 Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev., 136, B864–B871. https://doi.org/10.1103/PhysRev.136.B864

119 Holland, T.J.B., Hudson, N.F.C., Powell, R., & Harte, B. (2013). New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. J. Petrol., 54, 1901–1920. https://doi.org/10.1093/petrology/egt035

120 Holmström, E., & Stixrude, L. (2015). Spin crossover in ferropericlase from first‐principles molecular dynamics. Phys. Rev. Lett., 114, 117202. https://doi.org/10.1103/PhysRevLett.114.117202

121 Holzapfel, W. (2009). Equations of state for solids under strong compression. Z. Kristallogr. – Cryst. Mater., 216, 473–488. https://doi.org/10.1524/zkri.216.9.473.20346

122 Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen‐Meyer, T., & Igel, H. (2020). Global mantle structure from multifrequency tomography using P, PP and P‐diffracted waves. Geophys. J. Int., 220, 96–141. https://doi.org/10.1093/gji/ggz394

123 Hsu, H., Blaha, P., Cococcioni, M., & Wentzcovitch, R.M. (2011). Spin‐state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys. Rev. Lett., 106, 118501. https://doi.org/10.1103/PhysRevLett.106.118501

124 Hsu, H., Umemoto, K., Blaha, P., & Wentzcovitch, R.M. (2010a). Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure. Earth Planet. Sci. Lett., 294, 19–26. https://doi.org/10.1016/j.epsl.2010.02.031

125 Hsu, H., Umemoto, K., Wu, Z., & Wentzcovitch, R.M. (2010b). Spin‐state crossover of iron in lower‐mantle minerals: Results of DFT+U investigations. Rev. Mineral. Geochem, 71, 169–199. https://doi.org/10.2138/rmg.2010.71.09

126 Hubbard, J. (1963). Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A, 276, 238–257. https://doi.org/10.1098/rspa.1963.0204

127 Hyung, E., Huang, S., Petaev, M.I., Jacobsen, S.B. (2016). Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet. Sci. Lett., 440, 158–168. https://doi.org/10.1016/j.epsl.2016.02.001

128 Imada, S., Hirose, K., Komabayashi, T., Suzuki, T., & Ohishi, Y. (2012). Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca‐ferrite‐type phases. Phys. Chem. Miner., 39, 525–530. https://doi.org/10.1007/s00269‐012‐0508‐x

129 Immoor, J., Marquardt, H., Miyagi, L., Speziale, S., Merkel, S., Schwark, I., et al. (2020). An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite‐heated diamond anvil cell. Rev. Sci. Instrum., 91, 045121. https://doi.org/10.1063/1.5143293

130 Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., & Frost, D.J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327, 193–195. https://doi.org/10.1126/science.1181443

131 Isaak, D.G. (1992). High‐temperature elasticity of iron‐bearing olivines. J. Geophys. Res. – Solid Earth, 97, 1871–1885. https://doi.org/10.1029/91JB02675

132 Isaak, D.G., Anderson, O.L., Goto, T., & Suzuki, I. (1989). Elasticity of single‐crystal forsterite measured to 1700 K. J. Geophys. Res. – Solid Earth, 94, 5895–5906. https://doi.org/10.1029/JB094iB05p05895

133 Ishii, M., & Tromp, J. (1999). Normal‐mode and free‐air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285, 1231–1236. https://doi.org/10.1126/science.285.5431.1231

134 Ishii, T., Liu, Z., & Katsura, T. (2019). A breakthrough in pressure generation by a Kawai‐type multi‐anvil apparatus with tungsten carbide anvils. Engineering, 5, 434–440. https://doi.org/10.1016/j.eng.2019.01.013

135 Ita, J., & Stixrude, L. (1992). Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. – Solid Earth, 97, 6849–6866. https://doi.org/10.1029/92JB00068

136 Jackson, I. (2015). Properties of rocks and minerals: Physical origins of anelasticity and attenuation in rock. In Schubert, G. (Ed.), Treatise on Geophysics, 2nd ed., Elsevier, Amsterdam, pp. 539–571. https://doi.org/10.1016/B978‐0‐444‐53802‐4.00045‐2

137 Jackson, I. (1998). Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys. J. Int., 134, 291–311. https://doi.org/10.1046/j.1365‐246x.1998.00560.x

138 Jackson, J.M., Sturhahn, W., Shen, G., Zhao, J., Hu, M.Y., Errandonea, D., et al. (2005a). A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. Am. Mineral., 90, 199–205. https://doi.org/10.2138/am.2005.1633

139 Jackson, J.M., Zhang, J., Shu, J., Sinogeikin, S.V., Bass, J.D. (2005b). High‐pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth’s lower mantle. Geophys. Res. Lett., 32, L21305. https://doi.org/10.1029/2005GL023522

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mantle Convection and Surface Expressions»

Представляем Вашему вниманию похожие книги на «Mantle Convection and Surface Expressions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mantle Convection and Surface Expressions»

Обсуждение, отзывы о книге «Mantle Convection and Surface Expressions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x