69 Connolly, J.A.D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett., 236, 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
70 Cox, P.A. (1987). The Electronic Structure and Chemistry of Solids. Oxford University Press, Oxford.
71 Crowhurst, J.C., Brown, J.M., Goncharov, A.F., & Jacobsen, S.D. (2008). Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science, 319, 451–453. https://doi.org/10.1126/science.1149606
72 Cummins, H.Z., & Schoen, P.E. (1972). Linear scattering from thermal fluctuations. In Arecchi, F.T., Schulz‐DuBois, E.O. (Eds.), Laser Handbook. North‐Holland Publishing Company, Amsterdam, pp. 1029–1075.
73 Dai, L., Kudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., et al. (2013). Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method. Phys. Chem. Miner., 40, 195–201. https://doi.org/10.1007/s00269‐012‐0558‐0
74 Davies, D.R., Goes, S., Davies, J.H., Schuberth, B.S.A., Bunge, H.‐P., & Ritsema, J. (2012). Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett., 353–354, 253–269. https://doi.org/10.1016/j.epsl.2012.08.016
75 Davies, G.F. (1974). Effective elastic moduli under hydrostatic stress—I. Quasi‐harmonic theory. J. Phys. Chem. Solids, 35, 1513–1520. https://doi.org/10.1016/S0022‐3697(74)80279‐9
76 Davies, G.F., & Dziewonski, A.M. (1975). Homogeneity and constitution of the earth’s lower mantle and outer core. Phys. Earth Planet. Inter., 10, 336–343. https://doi.org/10.1016/0031‐9201(75)90060‐6
77 Decremps, F., Antonangeli, D., Gauthier, M., Ayrinhac, S., Morand, M., Marchand, et al. (2014). Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys. Res. Lett., 41, 1459–1464. https://doi.org/10.1002/2013GL058859
78 Decremps, F., Belliard, L., Gauthier, M., & Perrin, B. (2010). Equation of state, stability, anisotropy and nonlinear elasticity of diamond‐cubic (ZB) silicon by phonon imaging at high pressure. Phys. Rev. B, 82, 104119. https://doi.org/10.1103/PhysRevB.82.104119
79 Decremps, F., Belliard, L., Perrin, B., & Gauthier, M. (2008). Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: Application to the stability study of AlPdMn. Phys. Rev. Lett., 100, 035502. https://doi.org/10.1103/PhysRevLett.100.035502
80 Deschamps, F., Cobden, L., & Tackley, P.J. (2012). The primitive nature of large low shear‐wave velocity provinces. Earth Planet. Sci. Lett., 349–350, 198–208. https://doi.org/10.1016/j.epsl.2012.07.012
81 Deschamps, F., & Trampert, J. (2004). Towards a lower mantle reference temperature and composition. Earth Planet. Sci. Lett., 222, 161–175. https://doi.org/10.1016/j.epsl.2004.02.024
82 Dil, J.G. (1982). Brillouin scattering in condensed matter. Rep. Prog. Phys., 45, 285–334. https://doi.org/10.1088/0034‐4885/45/3/002
83 Drickamer, H.G., & Frank, C.W. (1973). Electronic Transitions and the High Pressure Chemistry and Physics of Solids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6896-0.
84 Duffy, T.S., & Anderson, D.L. (1989). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res. – Solid Earth, 94, 1895–1912. https://doi.org/10.1029/JB094iB02p01895
85 Durand, S., Debayle, E., Ricard, Y., Zaroli, C., & Lambotte, S. (2017). Confirmation of a change in the global shear velocity pattern at around 1000 km depth. Geophys. J. Int., 211, 1628–1639. https://doi.org/10.1093/gji/ggx405
86 Dziewonski, A.M., & Anderson, D.L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356. https://doi.org/10.1016/0031‐9201(81)90046‐7
87 Fayer, M.D. (1982). Dynamics of molecules in condensed phases: picosecond holographic grating experiments. Annu. Rev. Phys. Chem., 33, 63–87. https://doi.org/10.1146/annurev.pc.33.100182.000431
88 Fei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y., & Prakapenka, V. (2007). Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys. Res. Lett., 34, L17307. https://doi.org/10.1029/2007GL030712
89 Finkelstein, G.J., Jackson, J.M., Said, A., Alatas, A., Leu, B.M., Sturhahn, W., & Toellner, T.S. (2018). Strongly anisotropic magnesiowüstite in Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 123, 4740–4750. https://doi.org/10.1029/2017JB015349
90 Fiquet, G., Auzende, A.L., Siebert, J., Corgne, A., Bureau, H., Ozawa, H., & Garbarino, G. (2010). Melting of peridotite to 140 gigapascals. Science, 329, 1516–1518. https://doi.org/10.1126/science.1192448
91 Fiquet, G., Badro, J., Guyot, F., Bellin, C., Krisch, M., Antonangeli, D., et al. (2004). Application of inelastic X‐ray scattering to the measurements of acoustic wave velocities in geophysical materials at very high pressure. Phys. Earth Planet. Inter., 143–144, 5–18. https://doi.org/10.1016/j.pepi.2003.10.005
92 Fiquet, G., Badro, J., Guyot, F., Requardt, H., & Krisch, M. (2001). Sound velocities in iron to 110 gigapascals. Science, 291, 468–471. https://doi.org/10.1126/science.291.5503.468
93 Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., Bihan, T.L. (2000). Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett., 27, 21–24. https://doi.org/10.1029/1999GL008397
94 Fischer, R.A., Campbell, A.J., Chidester, B.A., Reaman, D.M., Thompson, E.C., Pigott, J.S., et al. (2018). Equations of state and phase boundary for stishovite and CaCl2‐type SiO2. Am. Mineral., 103, 792–802. https://doi.org/10.2138/am‐2018‐6267
95 Frost, D.A., Rost, S., Garnero, E.J., & Li, M. (2017). Seismic evidence for Earth’s crusty deep mantle. Earth Planet. Sci. Lett., 470, 54–63. https://doi.org/10.1016/j.epsl.2017.04.036
96 Frost, D.J., & Langenhorst, F. (2002). The effect of Al2O3 on Fe‐Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet. Sci. Lett., 199, 227–241.
97 Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Trønnes, R.G., & Rubie, D.C. (2004). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428, 409–412. https://doi.org/10.1038/nature02413
98 Fu, S., Yang, J., Tsujino, N., Okuchi, T., Purevjav, N., & Lin, J.‐F. (2019). Single‐crystal elasticity of (Al,Fe)‐bearing bridgmanite and seismic shear wave radial anisotropy at the topmost lower mantle. Earth Planet. Sci. Lett., 518, 116–126. https://doi.org/10.1016/j.epsl.2019.04.023
99 Fu, S., Yang, J., Zhang, Y., Okuchi, T., McCammon, C., Kim, H.‐I., et al. (2018). Abnormal elasticity of Fe‐bearing bridgmanite in the Earth’s lower mantle. Geophys. Res. Lett., 45, 4725–4732. https://doi.org/10.1029/2018GL077764
100 Fujino, K., Nishio‐Hamane, D., Suzuki, K., Izumi, H., Seto, Y., & Nagai, T. (2009). Stability of the perovskite structure and possibility of the transition to the post‐perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys. Earth Planet. Inter., 177, 147–151. https://doi.org/10.1016/j.pepi.2009.08.009
101 Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. – Solid Earth, 118, 5920–5938. https://doi.org/10.1002/2013JB010466
102 Funamori, N., & Jeanloz, R. (1997). High‐pressure transformation of Al2O3. Science, 278, 1109–1111. https://doi.org/10.1126/science.278.5340.1109
103 Funamori, N., Jeanloz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. J. Geophys. Res. – Solid Earth, 105, 26037–26043. https://doi.org/10.1029/2000JB900252
Читать дальше