Mantle Convection and Surface Expressions

Здесь есть возможность читать онлайн «Mantle Convection and Surface Expressions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mantle Convection and Surface Expressions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mantle Convection and Surface Expressions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales.
Mantle Convection and Surface Expressions Volume highlights include:
Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Mantle Convection and Surface Expressions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mantle Convection and Surface Expressions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ACKNOWLEDGMENTS

The author would like to thank J. M. Jackson and W. Sturhahn for discussions about spin transitions and G. Steinle‐Neumann for providing valuable feedback on parts of the manuscript. The constructive feedback of three anonymous reviewers is highly appreciated and helped to improve the manuscript. National Science Foundation’s Collaborative Study of Earth’s Deep Interior (EAR‐1161046, awarded to J. M. Jackson) supported a portion of this work.

REFERENCES

1 Abramson, E.H., Brown, J.M., & Slutsky, L.J. (1999). Applications of impulsive stimulated scattering in the Earth and planetary sciences. Annu. Rev. Phys. Chem., 50, 279–313. https://doi.org/10.1146/annurev.physchem.50.1.279

2 Abu‐Eid, R.M., & Burns, R.G. (1976). The effect of pressure on the degree of covalency of the cation‐oxygen bond in minerals. Am. Mineral., 61, 391–397.

3 Andrault, D., Angel, R.J., Mosenfelder, J.L., & Bihan, T.L. (2003). Equation of state of stishovite to lower mantle pressures. Am. Mineral., 88, 301–307. https://doi.org/10.2138/am‐2003‐2‐307

4 Andrault, D., & Fiquet, G. (2001). Synchrotron radiation and laser heating in a diamond anvil cell. Rev. Sci. Instrum., 72, 1283–1288. https://doi.org/10.1063/1.1343866

5 Andrault, D., Fiquet, G., Guyot, F., & Hanfland, M. (1998). Pressure‐induced Landau‐type transition in stishovite. Science, 282, 720–724. https://doi.org/10.1126/science.282.5389.720

6 Andrault, D., Petitgirard, S., Lo Nigro, G., Devidal, J.‐L., Veronesi, G., Garbarino, G., & Mezouar, M. (2012). Solid–liquid iron partitioning in Earth’s deep mantle. Nature, 487, 354–357. https://doi.org/10.1038/nature11294

7 Angel, R.J. (2000). Equations of state. Rev. Mineral. Geochem., 41, 35–59. https://doi.org/10.2138/rmg.2000.41.2

8 Angel, R.J., Alvaro, M., & Gonzalez‐Platas, J. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr. – Cryst. Mater., 229, 405–419. https://doi.org/10.1515/zkri‐2013‐1711

9 Angel, R.J., Downs, R.T., & Finger, L.W. (2000). High‐temperature–high‐pressure diffractometry. Rev. Mineral. Geochem., 41, 559–597. https://doi.org/10.2138/rmg.2000.41.16

10 Angel, R.J., Jackson, J.M., Reichmann, H.J., & Speziale, S. (2009). Elasticity measurements on minerals: a review. Eur. J. Mineral., 21, 525–550. https://doi.org/10.1127/0935‐1221/2009/0021‐1925

11 Anisimov, V.I., Aryasetiawan, F., & Lichtenstein, A.I. (1997). First‐principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys: Condens. Matter, 9, 767–808. https://doi.org/10.1088/0953‐8984/9/4/002

12 Anisimov, V.I., Zaanen, J., & Andersen, O.K. (1991). Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 44, 943–954. https://doi.org/10.1103/PhysRevB.44.943

13 Antonangeli, D., Komabayashi, T., Occelli, F., Borissenko, E., Walters, A.C., Fiquet, G., & Fei, Y. (2012). Simultaneous sound velocity and density measurements of hcp iron up to 93 GPa and 1100 K: An experimental test of the Birch’s law at high temperature. Earth Planet. Sci. Lett., 331–332, 210–214. https://doi.org/10.1016/j.epsl.2012.03.024

14 Antonangeli, D., Siebert, J., Aracne, C.M., Farber, D.L., Bosak, A., Hoesch, M., et al. (2011). Spin crossover in ferropericlase at high pressure: a seismologically transparent transition? Science, 331, 64–67. https://doi.org/10.1126/science.1198429

15 Auzende, A.‐L., Badro, J., Ryerson, F.J., Weber, P.K., Fallon, S.J., Addad, A., et al. (2008). Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower‐mantle geochemistry. Earth Planet. Sci. Lett., 269, 164–174. https://doi.org/10.1016/j.epsl.2008.02.001

16 Badro, J. (2014). Spin transitions in mantle minerals. Annu. Rev. Earth Planet. Sci., 42, 231–248. https://doi.org/10.1146/annurev‐earth‐042711‐105304

17 Badro, J., Fiquet, G., & Guyot, F. (2005). Thermochemical state of the lower mantle: New insights from mineral physics. In van der Hilst, R.D., Bass, J.D., Matas, J., Trampert, J. (Eds.), Earth’s Deep Mantle: Structure, Composition, and Evolution. American Geophysical Union, Washington, D.C., pp. 241–260. https://doi.org/10.1029/160GM15

18 Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., & d’Astuto, M. (2007). Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth Planet. Sci. Lett., 254, 233–238. https://doi.org/10.1016/j.epsl.2006.11.025

19 Badro, J., Fiquet, G., Guyot, F., Rueff, J.‐P., Struzhkin, V.V., Vankó, G., & Monaco, G. (2003). Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science, 300, 789–791. https://doi.org/10.1126/science.1081311

20 Badro, J., Rueff, J.‐P., Vankó, G., Monaco, G., Fiquet, G., & Guyot, F. (2004). Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science, 305, 383–386. https://doi.org/10.1126/science.1098840

21 Ballmer, M.D., Houser, C., Hernlund, J.W., Wentzcovitch, R.M., & Hirose, K. (2017a). Persistence of strong silica‐enriched domains in the Earth’s lower mantle. Nat. Geosci., 10, 236–240. https://doi.org/10.1038/ngeo2898

22 Ballmer, M.D., Lourenço, D.L., Hirose, K., Caracas, R., & Nomura, R. (2017b). Reconciling magma‐ocean crystallization models with the present‐day structure of the Earth’s mantle. Geochem. Geophys. Geosystems, 18, 2785–2806. https://doi.org/10.1002/2017GC006917

23 Ballmer, M.D., Schmerr, N.C., Nakagawa, T., & Ritsema, J. (2015). Compositional mantle layering revealed by slab stagnation at ~1000‐km depth. Sci. Adv., 1, e1500815. https://doi.org/10.1126/sciadv.1500815

24 Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density‐functional perturbation theory. Rev. Mod. Phys., 73, 515–562. https://doi.org/10.1103/RevModPhys.73.515

25 Baroni, S., Giannozzi, P., & Testa, A. (1987a). Elastic constants of crystals from linear‐response theory. Phys. Rev. Lett., 59, 2662–2665. https://doi.org/10.1103/PhysRevLett.59.2662

26 Baroni, S., Giannozzi, P., & Testa, A. (1987b). Green’s‐function approach to linear response in solids. Phys. Rev. Lett., 58, 1861–1864. https://doi.org/10.1103/PhysRevLett.58.1861

27 Bass, J.D., & Anderson, D.L. (1984). Composition of the upper mantle: geophysical tests of two petrological models. Geophys. Res. Lett., 11, 229–232. https://doi.org/10.1029/GL011i003p00229

28 Bassett, W.A., Reichmann, H.‐J., Angel, R.J., Spetzler, H., & Smyth, J.R. (2000). New diamond anvil cells for gigahertz ultrasonic interferometry and X‐ray diffraction. Am. Mineral., 85, 283–287. https://doi.org/10.2138/am‐2000‐2‐303

29 Birch, F. (1964). Density and composition of mantle and core. J. Geophys. Res., 69, 4377–4388. https://doi.org/10.1029/JZ069i020p04377

30 Birch, F. (1952). Elasticity and constitution of the Earth’s interior. J. Geophys. Res., 57, 227–286. https://doi.org/10.1029/JZ057i002p00227

31 Birch, F. (1947). Finite elastic strain of cubic crystals. Phys. Rev., 71, 809–824. https://doi.org/10.1103/PhysRev.71.809

32 Birch, F. (1939). The variation of seismic velocities within a simplified Earth model, in accordance with the theory of finite strain. Bull. Seismol. Soc. Am., 29, 463–479.

33 Birch, F. (1938). The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan’s theory of finite strain. J. Appl. Phys., 9, 279–288. https://doi.org/10.1063/1.1710417

34 Boffa Ballaran, T., Kurnosov, A., Glazyrin, K., Frost, D.J., Merlini, M., Hanfland, M., & Caracas, R. (2012). Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet. Sci. Lett., 333–334, 181–190. https://doi.org/10.1016/j.epsl.2012.03.029

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mantle Convection and Surface Expressions»

Представляем Вашему вниманию похожие книги на «Mantle Convection and Surface Expressions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mantle Convection and Surface Expressions»

Обсуждение, отзывы о книге «Mantle Convection and Surface Expressions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x