Mantle Convection and Surface Expressions

Здесь есть возможность читать онлайн «Mantle Convection and Surface Expressions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mantle Convection and Surface Expressions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mantle Convection and Surface Expressions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales.
Mantle Convection and Surface Expressions Volume highlights include:
Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Mantle Convection and Surface Expressions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mantle Convection and Surface Expressions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

35 Boffa Ballaran, T., Kurnosov, A., & Trots, D. (2013). Single‐crystal X‐ray diffraction at extreme conditions: a review. High Press. Res., 33, 453–465. https://doi.org/10.1080/08957959.2013.834052

36 Bolfan‐Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equation of state and post‐stishovite transformation of Al‐bearing silica up to 100 GPa and 3000 K. Phys. Earth Planet. Inter., 174, 70–77. https://doi.org/10.1016/j.pepi.2008.06.024

37 Boukaré, C.‐E., Ricard, Y., & Fiquet, G. (2015). Thermodynamics of the MgO‐FeO‐SiO2 system up to 140 GPa: Application to the crystallization of Earth’s magma ocean. J. Geophys. Res. – Solid Earth, 120, 6085–6101. https://doi.org/10.1002/2015JB011929

38 Bower, D.J., Wicks, J.K., Gurnis, M., & Jackson, J.M. (2011). A geodynamic and mineral physics model of a solid‐state ultralow‐velocity zone. Earth Planet. Sci. Lett., 303, 193–202. https://doi.org/10.1016/j.epsl.2010.12.035

39 Brandenburg, J.P., v& an Keken, P.E. (2007). Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res. – Solid Earth, 112, B06403. https://doi.org/10.1029/2006JB004813

40 Buchen, J., Marquardt, H., Ballaran, T.B., Kawazoe, T., & McCammon, C. (2017). The equation of state of wadsleyite solid solutions: constraining the effects of anisotropy and crystal chemistry. Am. Mineral., 102, 2494–2504. https://doi.org/10.2138/am‐2017‐6162

41 Buchen, J., Marquardt, H., Schulze, K., Speziale, S., Boffa Ballaran, T., Nishiyama, N., & Hanfland, M. (2018a). Equation of state of polycrystalline stishovite across the tetragonal‐orthorhombic phase transition. J. Geophys. Res. – Solid Earth, 123, 7347–7360. https://doi.org/10.1029/2018JB015835

42 Buchen, J., Marquardt, H., Speziale, S., Kawazoe, T., Boffa Ballaran, T., & Kurnosov, A. (2018b). High‐pressure single‐crystal elasticity of wadsleyite and the seismic signature of water in the shallow transition zone. Earth Planet. Sci. Lett., 498, 77–87. https://doi.org/10.1016/j.epsl.2018.06.027

43 Burkel, E. (2000). Phonon spectroscopy by inelastic x‐ray scattering. Rep. Prog. Phys., 63, 171–232. https://doi.org/10.1088/0034‐4885/63/2/203

44 Burns, R.G. (1993). Mineralogical Applications of Crystal Field Theory, 2nd ed., Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511524899

45 Burns, R.G. (1985). Thermodynamic data from crystal field spectra. Rev. Mineral. Geochem., 14, 277–316.

46 Cammarano, F., Deuss, A., Goes, S., & Giardini, D. (2005a). One‐dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints. J. Geophys. Res. – Solid Earth, 110, B01306. https://doi.org/10.1029/2004JB003272

47 Cammarano, F., Goes, S., Deuss, A., & Giardini, D. (2005b). Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet. Sci. Lett., 232, 227–243. https://doi.org/10.1016/j.epsl.2005.01.031

48 Cammarano, F., Goes, S., Vacher, P., & Giardini, D. (2003). Inferring upper‐mantle temperatures from seismic velocities. Phys. Earth Planet. Inter., 138, 197–222. https://doi.org/10.1016/S0031‐9201(03)00156‐0

49 Cammarano, F., Marquardt, H., Speziale, S., & Tackley, P.J. (2010). Role of iron‐spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophys. Res. Lett., 37, L03308. https://doi.org/10.1029/2009GL041583

50 Cammarano, F., Romanowicz, B., Stixrude, L., Lithgow‐Bertelloni, C., & Xu, W. (2009). Inferring the thermochemical structure of the upper mantle from seismic data. Geophys. J. Int., 179, 1169–1185. https://doi.org/10.1111/j.1365‐246X.2009.04338.x

51 Campbell, A.J. (2008). Measurement of temperature distributions across laser heated samples by multispectral imaging radiometry. Rev. Sci. Instrum., 79, 015108. https://doi.org/10.1063/1.2827513

52 Car, R., Parrinello, M. (1985). Unified approach for molecular dynamics and density‐functional theory. Phys. Rev. Lett., 55, 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471

53 Caracas, R. (2010). Spin and structural transitions in AlFeO3 and FeAlO3 perovskite and post‐perovskite. Phys. Earth Planet. Inter., 182, 10–17. https://doi.org/10.1016/j.pepi.2010.06.001

54 Caracas, R., & Cohen, R.E. (2005). Effect of chemistry on the stability and elasticity of the perovskite and post‐perovskite phases in the MgSiO3‐FeSiO3‐Al2O3 system and implications for the lowermost mantle. Geophys. Res. Lett., 32, L16310. https://doi.org/10.1029/2005GL023164

55 Carpenter, M.A. (2006). Elastic properties of minerals and the influence of phase transitions. Am. Mineral., 91, 229–246. https://doi.org/10.2138/am.2006.1979

56 Carpenter, M.A., Hemley, R.J., & Mao, H. (2000). High‐pressure elasticity of stishovite and the P42/mnm ⇌ Pnnm phase transition. J. Geophys. Res. – Solid Earth, 105, 10807–10816. https://doi.org/10.1029/1999JB900419

57 Carpenter, M.A., & Salje, E.K.H. (1998). Elastic anomalies in minerals due to structural phase transitions. Eur. J. Mineral., 10, 693–812. https://doi.org/10.1127/ejm/10/4/0693

58 Carpenter, M.A., Salje, E.K.H., & Graeme‐Barber, A. (1998). Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral., 10, 621–691. https://doi.org/10.1127/ejm/10/4/0621

59 Carrier, P., Wentzcovitch, R., & Tsuchiya, J. (2007). First‐principles prediction of crystal structures at high temperatures using the quasiharmonic approximation. Phys. Rev. B, 76, 064116. https://doi.org/10.1103/PhysRevB.76.064116

60 Catalli, K., Shim, S.‐H., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P., et al. (2010). Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth Planet. Sci. Lett., 289, 68–75. https://doi.org/10.1016/j.epsl.2009.10.029

61 Chantel, J., Frost, D.J., McCammon, C.A., Jing, Z., & Wang, Y. (2012). Acoustic velocities of pure and iron‐bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett., 39, L19307. https://doi.org/10.1029/2012GL053075

62 Chen, B., Jackson, J.M., Sturhahn, W., Zhang, D., Zhao, J., Wicks, J.K., & Murphy, C.A. (2012). Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa. J. Geophys. Res. – Solid Earth, 117, B08208. https://doi.org/10.1029/2012JB009162

63 Chung, D.H., & Buessem, W.R. (1967). The Voigt‐Reuss‐Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β‐ZnS, ZnSe, and CdTe. J. Appl. Phys., 38, 2535–2540. https://doi.org/10.1063/1.1709944

64 Chust, T.C., Steinle‐Neumann, G., Dolejš, D., Schuberth, B.S.A., & Bunge, H.‐P. (2017). MMA‐EoS: a computational framework for mineralogical thermodynamics. J. Geophys. Res. – Solid Earth, 122, 9881–9920. https://doi.org/10.1002/2017JB014501

65 Cobden, L., Goes, S., Cammarano, F., & Connolly, J.A.D. (2008). Thermochemical interpretation of one‐dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys. J. Int., 175, 627–648. https://doi.org/10.1111/j.1365‐246X.2008.03903.x

66 Cobden, L., Goes, S., Ravenna, M., Styles, E., Cammarano, F., Gallagher, K., & Connolly, J.A.D. (2009). Thermochemical interpretation of 1‐D seismic data for the lower mantle: The significance of nonadiabatic thermal gradients and compositional heterogeneity. J. Geophys. Res. – Solid Earth, 114, B11309. https://doi.org/10.1029/2008JB006262

67 Cococcioni, M. (2010). Accurate and efficient calculations on strongly correlated minerals with the LDA+U method: Review and perspectives. Rev. Mineral. Geochem., 71, 147–167. https://doi.org/10.2138/rmg.2010.71.8

68 Cococcioni, M., & de Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B, 71, 035105. https://doi.org/10.1103/PhysRevB.71.035105

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mantle Convection and Surface Expressions»

Представляем Вашему вниманию похожие книги на «Mantle Convection and Surface Expressions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mantle Convection and Surface Expressions»

Обсуждение, отзывы о книге «Mantle Convection and Surface Expressions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x