Mantle Convection and Surface Expressions

Здесь есть возможность читать онлайн «Mantle Convection and Surface Expressions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mantle Convection and Surface Expressions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mantle Convection and Surface Expressions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales.
Mantle Convection and Surface Expressions Volume highlights include:
Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Mantle Convection and Surface Expressions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mantle Convection and Surface Expressions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

140 Jacobsen, S.D., Reichmann, H.‐J., Spetzler, H.A., Mackwell, S.J., Smyth, J.R., et al. (2002). Structure and elasticity of single‐crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J. Geophys. Res. – Solid Earth, 107, ECV 4‐1–ECV 4‐14. https://doi.org/10.1029/2001JB000490

141 Jacobsen, S.D., Spetzler, H., Reichmann, H.J., & Smyth, J.R. (2004). Shear waves in the diamond‐anvil cell reveal pressure‐induced instability in (Mg,Fe)O. Proc. Natl. Acad. Sci. U.S.A., 101, 5867–5871. https://doi.org/10.1073/pnas.0401564101

142 Jiang, F., Gwanmesia, G.D., Dyuzheva, T.I., & Duffy, T.S. (2009). Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Phys. Earth Planet. Inter., 172, 235–240. https://doi.org/10.1016/j.pepi.2008.09.017

143 Kaneshima, S., Helffrich, G. (2009). Lower mantle scattering profiles and fabric below Pacific subduction zones. Earth Planet. Sci. Lett., 282, 234–239. https://doi.org/10.1016/j.epsl.2009.03.024

144 Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., et al. (2012). BX90: A new diamond anvil cell design for X‐ray diffraction and optical measurements. Rev. Sci. Instrum., 83, 125102. https://doi.org/10.1063/1.4768541

145 Karato, S. (2008). Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804892

146 Karato, S. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 20, 1623–1626. https://doi.org/10.1029/93GL01767

147 Karki, B.B., Stixrude, L., & Crain, J. (1997a). Ab initio elasticity of three high‐pressure polymorphs of silica. Geophys. Res. Lett., 24, 3269–3272. https://doi.org/10.1029/97GL53196

148 Karki, B.B., Stixrude, L., & Wentzcovitch, R.M. (2001a). High‐pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys., 39, 507–534. https://doi.org/10.1029/2000RG000088

149 Karki, B.B., Warren, M.C., Stixrude, L., Ackland, G.J., & Crain, J. (1997b). Ab initio studies of high‐pressure structural transformations in silica. Phys. Rev. B, 55, 3465–3471. https://doi.org/10.1103/PhysRevB.55.3465

150 Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S., & Baroni, S. (2000). High‐pressure lattice dynamics and thermoelasticity of MgO. Phys. Rev. B, 61, 8793–8800. https://doi.org/10.1103/PhysRevB.61.8793

151 Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S., & Baroni, S. (2001b). First principles thermoelasticity of MgSiO3‐perovskite: consequences for the inferred properties of the lower mantle. Geophys. Res. Lett., 28, 2699–2702. https://doi.org/10.1029/2001GL012910

152 Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S., & Baroni, S. (1999). First‐principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286, 1705–1707. https://doi.org/10.1126/science.286.5445.1705

153 Kato, J., Hirose, K., Ozawa, H., & Ohishi, Y. (2013). High‐pressure experiments on phase transition boundaries between corundum, Rh2O3(II)‐and CaIrO3‐type structures in Al2O3. Am. Mineral., 98, 335–339. https://doi.org/10.2138/am.2013.4133

154 Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito, E. (2010). Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter., 183, 212–218. https://doi.org/10.1016/j.pepi.2010.07.001

155 Kavner, A., & Nugent, C. (2008). Precise measurements of radial temperature gradients in the laser‐heated diamond anvil cell. Rev. Sci. Instrum., 79, 024902. https://doi.org/10.1063/1.2841173

156 Kawai, K., & Tsuchiya, T. (2015). Small shear modulus of cubic CaSiO3 perovskite. Geophys. Res. Lett., 42, 2718–2726. https://doi.org/10.1002/2015GL063446

157 Kennett, B.L.N., & Engdahl, E.R. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465. https://doi.org/10.1111/j.1365‐246X.1991.tb06724.x

158 Kennett, B.L.N., Engdahl, E.R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122, 108–124. https://doi.org/10.1111/j.1365‐246X.1995.tb03540.x

159 Keppler, H., Kantor, I., & Dubrovinsky, L.S. (2007). Optical absorption spectra of ferropericlase to 84 GPa. Am. Mineral., 92, 433–436. https://doi.org/10.2138/am.2007.2454

160 Kesson, S.E., Gerald, J.D.F., & Shelley, J.M. (1998). Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393, 252–255. https://doi.org/10.1038/30466

161 Kesson, S.E., Gerald, J.D.F., & Shelley, J.M.G. (1994). Mineral chemistry and density of subducted basaltic crust at lower‐mantle pressures. Nature, 372, 767–769. https://doi.org/10.1038/372767a0

162 Khan, A., Connolly, J.A.D., & Taylor, S.R. (2008). Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle. J. Geophys. Res. – Solid Earth, 113, B09308. https://doi.org/10.1029/2007JB005239

163 Kobayashi, Y., Kondo, T., Ohtani, E., Hirao, N., Miyajima, N., Yagi, T., et al. (2005). Fe‐Mg partitioning between (Mg, Fe)SiO3 post‐perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys. Res. Lett., 32, L19301. https://doi.org/10.1029/2005GL023257

164 Koelemeijer, P., Ritsema, J., Deuss, A., & van Heijst, H.‐J. (2016). SP12RTS: a degree‐12 model of shear‐ and compressional‐wave velocity for Earth’s mantle. Geophys. J. Int., 204, 1024–1039. https://doi.org/10.1093/gji/ggv481

165 Kohn, W., & Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

166 Komabayashi, T., Hirose, K., Nagaya, Y., Sugimura, E., & Ohishi, Y. (2010). High‐temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth Planet. Sci. Lett., 297, 691–699. https://doi.org/10.1016/j.epsl.2010.07.025

167 Komabayashi, T., & Omori, S. (2006). Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600°C: Implications for water circulation in the Earth’s deep mantle. Phys. Earth Planet. Inter., 156, 89–107. https://doi.org/10.1016/j.pepi.2006.02.002

168 Krebs, J.J., & Maisch, W.G. (1971). Exchange effects in the optical‐absorption spectrum of Fe3+ in Al2O3. Phys. Rev. B, 4, 757–769. https://doi.org/10.1103/PhysRevB.4.757

169 Kurnosov, A., Marquardt, H., Dubrovinsky, L., & Potapkin, V. (2019). A waveguide‐based flexible CO2‐laser heating system for diamond‐anvil cell applications. Comptes Rendus Geosci., 351, 280–285. https://doi.org/10.1016/j.crte.2018.09.008

170 Kurnosov, A., Marquardt, H., Frost, D.J., Ballaran, T.B., & Ziberna, L. (2017). Evidence for a Fe3+‐rich pyrolitic lowermantle from (Al,Fe)‐bearing bridgmanite elasticity data. Nature, 543, 543–546. https://doi.org/10.1038/nature21390

171 Labrosse, S., Hernlund, J.W., & Hirose, K. (2015). Fractional melting and freezing in the deep mantle and implications for the formation of a basal magma ocean. In Badro, J., Walter, M. (Eds.), The Early Earth: Accretion and Differentiation. American Geophysical Union, Washington, D.C., pp. 123–142. https://doi.org/10.1002/9781118860359.ch7

172 Lakshtanov, D.L., Sinogeikin, S.V., Litasov, K.D., Prakapenka, V.B., & Hellwig, H., Wang, J., et al. (2007). The post‐stishovite phase transition in hydrous alumina‐bearing SiO2 in the lower mantle of the earth. Proc. Natl. Acad. Sci. U.S.A., 104, 13588–13590. https://doi.org/10.1073/pnas.0706113104

173 Lehmann, G., Harder, H. (1970). Optical spectra of di‐ and trivalent iron in corundum. Am. Mineral., 55, 98–105.

174 Li, B., Kung, J., & Liebermann, R.C. (2004). Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X‐radiation in multi‐anvil apparatus. Phys. Earth Planet. Inter., 143–144, 559–574. https://doi.org/10.1016/j.pepi.2003.09.020

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mantle Convection and Surface Expressions»

Представляем Вашему вниманию похожие книги на «Mantle Convection and Surface Expressions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mantle Convection and Surface Expressions»

Обсуждение, отзывы о книге «Mantle Convection and Surface Expressions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x