199. G.S.S. Andrade, A.K.F. Carvalho, C.M. Romero, P.C. Oliveira, H.F. De Castro, Mucor circinelloides whole-cells as a biocatalyst for the production of ethyl esters based on babassu oil, Bioprocess Biosyst. Eng . 37, 2539–2548, 2014. https://doi.org/10.1007/s00449-014-1231-4.
200. W. Li, W. Du, D. Liu, Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology, J. Mol. Catal. B Enzym . 45, 122–127, 2007. https://doi.org/10.1016/j.molcatb.2007.01.002.
201. S. Tamalampudi, M.R. Talukder, S. Hama, T. Numata, A. Kondo, H. Fukuda, Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst, Biochem. Eng. J . 39, 185–189, 2008. https://doi.org/10.1016/j.bej.2007.09.002.
202. S. Hama, H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda, H. Fukuda, Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles, Biochem. Eng. J . 34, 273–278, 2007. https://doi.org/10.1016/j.bej.2006.12.013.
203. B. Balasubramaniam, A. Sudalaiyadum Perumal, J. Jayaraman, J. Mani, P. Ramanujam, Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil), Waste Manag . 32, 1539–1547, 2012. https://doi.org/10.1016/j.wasman.2012.03.011.
204. S. Athalye, R. Sharma-Shivappa, S. Peretti, P. Kolar, J.P. Davis, Producing biodiesel from cottonseed oil using Rhizopus oryzae ATCC #34612 whole cell biocatalysts: Culture media and cultivation period optimization, Energy Sustain. Dev . 17, 331–336, 2013. https://doi.org/10.1016/j.esd.2013.03.009.
205. M.G. Devanesan, T. Viruthagiri, N. Sugumar, Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens , African J. Biotechnol . 6, 2497–2501, 2007. https://doi.org/10.4314/ajb.v6i21.58115.
206. Q. Li, J. Zheng, Y. Yan, Biodiesel preparation catalyzed by compound-lipase in co-solvent, Fuel Process. Technol . 91, 1229–1234, 2010. https://doi.org/10.1016/j.fuproc.2010.04.002.
207. R.C. Rodrigues, M.A.Z. Ayub, Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil, Process Biochem . 46, 682–688, 2011. https://doi.org/10.1016/j.procbio.2010.11.013.
208. J.K. Poppe, C.R. Matte, M. Do Carmo Ruaro Peralba, R. Fernandez-Lafuente, R.C. Rodrigues, M.A.Z. Ayub, Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases, Appl. Catal. A Gen . 490, 50–56, 2015. https://doi.org/10.1016/j.apcata.2014.10.050.
209. K. Tongboriboon, B. Cheirsilp, A. H-Kittikun, Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system, J. Mol. Catal. B Enzym . 67, 52–59, 2010. https://doi.org/10.1016/j.molcatb.2010.07.005.
210. A. Salis, M. Pinna, M. Monduzzi, V. Solinas, Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis, J. Mol. Catal. B Enzym . 54, 19–26, 2008. https://doi.org/10.1016/j.molcatb.2007.12.006.
211. A.R. Rodrigues, A. Paiva, M.G. Da Silva, P. Simões, S. Barreiros, Continuous enzymatic production of biodiesel from virgin and waste sunflower oil in supercritical carbon dioxide, in: J. Supercrit. Fluids , pp. 259–264, 2011. https://doi.org/10.1016/j.supflu.2010.10.031.
212. J.S. Alves, N.S. Vieira, A.S. Cunha, A.M. Silva, M.A. Záchia Ayub, R. Fernandez-Lafuente, R.C. Rodrigues, Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of bio-catalysts, RSC Adv . 4, 6863–6868, 2014. https://doi.org/10.1039/c3ra45969a.
213. M. Lee, J. Lee, D. Lee, J. Cho, S. Kim, C. Park, Improvement of enzymatic biodiesel production by controlled substrate feeding using silica gel in solvent free system, Enzyme Microb. Technol . 49, 402–406, 2011. https://doi.org/10.1016/j.enzmictec.2011.06.020.
214. D. Šinkuniene, P. Adlercreutz, Effects of regioselectivity and lipid class specificity of lipases on transesterification, exemplified by biodiesel production, JAOCS, J. Am. Oil Chem. Soc . 91, 1283–1290, 2014. https://doi.org/10.1007/s11746-014-2465-7.
215. Y. Watanabe, T. Nagao, Y. Nishida, Y. Takagi, Y. Shimada, Enzymatic production of fatty acid methyl esters by hydrolysis of acid oil followed by esterification, JAOCS, J. Am. Oil Chem. Soc . 84, 1015–1021, 2007. https://doi.org/10.1007/s11746-007-1143-4.
216. Y. Yan, L. Xu, M. Dai, A synergetic whole-cell biocatalyst for biodiesel production, RSC Adv . 2, 6170, 2012. https://doi.org/10.1039/c2ra20974h.
217. A.P. de los Ríos, F.J. Hernández-Fernández, D. Gómez, M. Rubio, F. Tomás-Alonso, G. Víllora, Understanding the chemical reaction and mass- transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems, J. Supercrit. Fluids . 43, 303–309, 2007. https://doi.org/10.1016/J.SUPFLU.2007.06.003.
218. P. Lozano, Enzymes in neoteric solvents: From one-phase to multiphase systems, Green Chem . 12, 555, 2010. https://doi.org/10.1039/b919088k.
219. L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO 2, Nature. 399 (1999) 28–29. https://doi.org/10.1038/19887.
220. P. Lozano, J.M. Bernal, M. Vaultier, Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/ supercritical carbon dioxide biphasic systems, Fuel . 90, 3461–3467, 2011. https://doi.org/10.1016/j.fuel.2011.06.008.
221. D. Yu, C. Wang, Y. Yin, A. Zhang, G. Gao, X. Fang, A synergistic effect of microwave irradiation and ionic liquids on enzyme-catalyzed biodiesel production, Green Chem . 13, 1869, 2011. https://doi.org/10.1039/c1gc15114b.
222. B.M. Nogueira, C. Carretoni, R. Cruz, S. Freitas, P.A. Melo, R. Costa-F??lix, J.C. Pinto, M. Nele, Microwave activation of enzymatic catalysts for bio-diesel production, J. Mol. Catal. B Enzym . 67, 117–121, 2010. https://doi.org/10.1016/j.molcatb.2010.07.015.
223. M.L.B. Queiroz, R.F. Boaventura, M.N. Melo, H.M. Alvarez, C.M.F. Soares, Á.S. Lima, M.F. Heredia, C. Dariva, A.T. Fricks, Microwave activation of immobilized lipase for transesterification of vegetable oils, Quim. Nova ., 2015. https://doi.org/10.5935/0100-4042.20150031.
224. Y. Zhang, X. Xia, M. Duan, Y. Han, J. Liu, M. Luo, C. Zhao, Y. Zu, Y. Fu, Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation, J. Mol. Catal. B Enzym . 123, 35–40, 2016. https://doi.org/10.1016/J.MOLCATB.2015.10.013.
225. S. Shah, M. Gupta, The effect of ultrasonic pre-treatment on the catalytic activity of lipases in aqueous and non-aqueous media, Chem. Cent. J . 2, 1, 2008. https://doi.org/10.1186/1752-153X-2-1.
226. G. Kumar, D. Kumar, Poonam, R. Johari, C.P. Singh, Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication, Ultrason. Sonochem . 18, 923–927, 2011. https://doi.org/10.1016/J.ULTSONCH.2011.03.004.
227. D. Yu, L. Tian, H. Wu, S. Wang, Y. Wang, D. Ma, X. Fang, Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435, Process Biochem . 45, 519–525, 2010. https://doi.org/10.1016/J.PROCBIO.2009.11.012.
228. G. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem . 32, 60–67, 2016. https://doi.org/10.1016/j.ultsonch.2016.01.033.
Читать дальше