106. S. Kojima, D. Du, M. Sato, E.Y. Park, Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent, J. Biosci. Bioeng . 98, 420–424, 2004. https://doi.org/ http://dx.doi.org/10.1016/S1389-1723(05)00306-3.
107. A. Bajaj, P. Lohan, P.N. Jha, R. Mehrotra, Biodiesel production through lipase catalyzed transesterification: An overview, J. Mol. Catal. B Enzym . 62, 9–14, 2010. https://doi.org/10.1016/j.molcatb.2009.09.018.
108. S. Ycel, P. Terziolu, D. zime, Lipase Applications in Biodiesel Production, in: Biodiesel - Feed. Prod. Appl., InTech, 2012. https://doi.org/10.5772/52662.
109. M.Y. Noraini, H.C. Ong, M.J. Badrul, W.T. Chong, A review on potential enzymatic reaction for biofuel production from algae, Renew. Sustain. Energy Rev ., 2014. https://doi.org/10.1016/j.rser.2014.07.089.
110. P. Priji, K.N. Unni, S. Sajith, P. Binod, S. Benjamin, Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat, Biotechnol. Appl. Biochem ., 2015. https://doi.org/10.1002/bab.1237.
111. A. Kumar, S.S. Parihar, N. Batra, Enrichment, isolation and optimization of lipase-producing Staphylococcus sp. from oil mill waste (Oil cake), J. Exp. Sci ., 2012.
112. S. Javed, F. Azeem, S. Hussain, I. Rasul, M.H. Siddique, M. Riaz, M. Afzal, A. Kouser, H. Nadeem, Bacterial lipases: A review on purification and characterization, Prog. Biophys. Mol. Biol . 132, 23–34, 2018. https://doi.org/10.1016/j.pbiomolbio.2017.07.014.
113. B.D. Ribeiro, A.M. de Castro, M.A.Z. Coelho, D.M.G. Freire, Production and use of lipases in bioenergy: A review from the feedstocks to biodiesel production, Enzyme Res . 2011, 1–16, 2011. https://doi.org/10.4061/2011/615803.
114. M. Kapoor, M.N. Gupta, Lipase promiscuity and its biochemical applications, Process Biochem ., 2012. https://doi.org/10.1016/j.procbio.2012.01.011.
115. A.L. Paiva, V.M. Balcão, F.X. Malcata, Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enzyme Microb. Technol ., 2000. https://doi.org/10.1016/S0141-0229(00)00206-4.
116. A. Türkan, Ş. Kalay, Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: Elucidation of the mechanisms of lipases, J. Chromatogr. A . 1127, 34–44, 2006. https://doi.org/10.1016/j.chroma.2006.05.065.
117. D. Bezbradica, M. Stojanović, D. Veličković, A. Dimitrijević, M. Carević, M. Mihailović, N. Milosavić, Kinetic model of lipase-catalyzed conversion of ascorbic acid and oleic acid to liposoluble vitamin C ester, Biochem. Eng. J ., 2013. https://doi.org/10.1016/j.bej.2012.12.001.
118. A.E.M. Janssen, B.J. Sjursnes, A. V. Vakurov, P.J. Halling, Kinetics of lipasecatalyzed esterification in organic media: Correct model and solvent effects on parameters, Enzyme Microb. Technol ., 1999. https://doi.org/10.1016/S0141-0229(98)00134-3.
119. K.-E. Jaeger, B.W. Dijkstra, M.T. Reetz, Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annu. Rev. Microbiol . 53, 315–351, 1999. https://doi.org/10.1146/annurev.micro.53.1.315.
120. F. Hasan, A.A. Shah, A. Hameed, Industrial applications of microbial lipases, Enzyme Microb. Technol . 39, 235–251, 2006. https://doi.org/10.1016/j.enzmictec.2005.10.016.
121. H. Treichel, D. de Oliveira, M.A. Mazutti, M. Di Luccio, J.V. Oliveira, A Review on Microbial Lipases Production, Food Bioprocess Technol . 3, 182–196, 2010. https://doi.org/10.1007/s11947-009-0202-2.
122. C. Song, L. Sheng, X. Zhang, Immobilization and Characterization of a Thermostable Lipase, Mar. Biotechnol . 15, 659–667, 2013. https://doi.org/10.1007/s10126-013-9515-2.
123. Y. Hotta, S. Ezaki, H. Atomi, T. Imanaka, Extremely stable and versatile carboxylesterase from a Hyperthermophilic archaeon ., Appl. Environ. Microbiol . 68, 3925–31, 2002. https://doi.org/10.1128/AEM.68.8.3925-3931.2002.
124. M. Royter, M. Schmidt, C. Elend, H. Höbenreich, T. Schäfer, U.T. Bornscheuer, G. Antranikian, Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis, Extremophiles . 13, 769–783, 2009. https://doi.org/10.1007/s00792-009-0265-z.
125. K. Kawakami, Y. Oda, R. Takahashi, Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil, Biotechnol. Biofuels . 4, 42, 2011. https://doi.org/10.1186/1754-6834-4-42.
126. R. Abdulla, P. Ravindra, Immobilized Burkholderia cepacia lipase for bio-diesel production from crude Jatropha curcas L. oil, Biomass and Bioenergy ., 2013. https://doi.org/10.1016/j.biombioe.2013.04.010.
127. K.R. Jegannathan, L. Jun-Yee, E.-S. Chan, P. Ravindra, Design an immobilized lipase enzyme for biodiesel production, J. Renew. Sustain. Energy . 1, 063101, 2009. https://doi.org/10.1063/1.3256191.
128. Q. You, X. Yin, Y. Zhao, Y. Zhang, Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite, Bioresour. Technol . 148, 202–207, 2013. https://doi.org/10.1016/j.biortech.2013.08.143.
129. P.C.M. Da Rós, W.C. e Silva, D. Grabauskas, V.H. Perez, H.F. de Castro, Biodiesel from babassu oil: Characterization of the product obtained by enzymatic route accelerated by microwave irradiation, Ind. Crops Prod . 52, 313–320, 2014. https://doi.org/10.1016/j.indcrop.2013.11.013.
130. P.C.M. Da Rós, G.A.M. Silva, A.A. Mendes, J.C. Santos, H.F. de Castro, Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks, Bioresour. Technol . 101, 5508–5516, 2010. https://doi.org/10.1016/j.biortech.2010.02.061.
131. C.G. Lopresto, S. Naccarato, L. Albo, M.G. De Paola, S. Chakraborty, S. Curcio, V. Calabro, Enzymatic transesterification of waste vegetable oil to produce biodiesel, Ecotoxicol. Environ. Saf . 121, 229–235, 2015. https://doi.org/10.1016/j.ecoenv.2015.03.028.
132. A.-F. Hsu, K. Jones, T.A. Foglia, W.N. Marmer, Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel, Biotechnol. Appl. Biochem . 36, 181–186, 2002. https://doi.org/10.1042/.
133. X. Wang, X. Liu, C. Zhao, Y. Ding, P. Xu, Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite, Bioresour. Technol . 102, 6352–6355, 2011. https://doi.org/10.1016/j.biortech.2011.03.003.
134. V. Kumari, S. Shah, M.N. Gupta, Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica , Energy and Fuels . 21, 368–372, 2007. https://doi.org/10.1021/ef0602168.
135. J. Zheng, L. Xu, Y. Liu, X. Zhang, Y. Yan, Lipase-coated K 2SO 4micro-crystals: Preparation, characterization, and application in biodiesel production using various oil feedstocks, Bioresour. Technol . 110, 224–231, 2012. https://doi.org/10.1016/J.BIORTECH.2012.01.088.
136. S. Shah, M.N. Gupta, Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system, Process Biochem . 42, 409–414, 2007. https://doi.org/10.1016/j.procbio.2006.09.024.
137. L.N. Lima, G.C. Oliveira, M.J. Rojas, H.F. Castro, P.C.M. Da Rós, A.A. Mendes, R.L.C. Giordano, P.W. Tardioli, Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems, J. Ind. Microbiol. Biotechnol . 42, 523–535, 2015. https://doi.org/10.1007/s10295-015-1586-9.
Читать дальше