Biodiesel Technology and Applications

Здесь есть возможность читать онлайн «Biodiesel Technology and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biodiesel Technology and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biodiesel Technology and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Energy technologies have attracted great attention due to the fast development of sustainable energy. Biodiesel technologies have been identified as the sustainable route through which overdependence on fossil fuels can be reduced. Biodiesel has played a key role in handling the growing challenge of a global climate change policy. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is a cost-effective, renewable, and sustainable fuel that can be made from vegetable oils and animal fats. Compared to petroleum-based diesel, biodiesel would offer a non-toxicity, biodegradability, improved air quality and positive impact on the environment, energy security, safe-to-handle, store and transport and so on. Biodiesels have been used as a replacement of petroleum diesel in transport vehicles, heavy-duty trucks, locomotives, heat oils, hydrogen production, electricity generators, agriculture, mining, construction, and forestry equipment.
This book describes a comprehensive overview, covering a broad range of topics on biodiesel technologies and allied applications. Chapters cover history, properties, resources, fabrication methods, parameters, formulations, reactors, catalysis, transformations, analysis, in situ spectroscopies, key issues and applications of biodiesel technology. It also includes biodiesel methods, extraction strategies, biowaste utilization, oleochemical resources, non-edible feedstocks, heterogeneous catalysts, patents, and case-studies. Progress, challenges, future directions, and state-of-the-art biodiesel commercial technologies are discussed in detail. This book is an invaluable resource guide for professionals, faculty, students, chemical engineers, biotechnologists, and environmentalists in these research and development areas.

Biodiesel Technology and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biodiesel Technology and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

169. S. Ertuğrul, G. Dönmez, S. Takaç, Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity, J. Hazard. Mater ., 2007. https://doi.org/10.1016/j.jhazmat.2007.04.034.

170. V. Ramakrishnan, L.C. Goveas, N. Suralikerimath, C. Jampani, P.M. Halami, B. Narayan, Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization, Biocatal. Agric. Biotechnol ., 2016. https://doi.org/10.1016/j.bcab.2016.02.005.

171. M. Adamczak, W. Bednarski, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles, Process Biochem ., 2004. https://doi.org/10.1016/S0032-9592(03)00266-8.

172. L. Ping, X. Yuan, M. Zhang, Y. Chai, S. Shan, Improvement of extracellular lipase production by a newly isolated Yarrowia lipolytica mutant and its application in the biosynthesis of L-ascorbyl palmitate, Int. J. Biol. Macromol ., 2018. https://doi.org/10.1016/j.ijbiomac.2017.08.016.

173. J. Huang, J. Xia, W. Jiang, Y. Li, J. Li, Biodiesel production from microalgae oil catalyzed by a recombinant lipase, Bioresour. Technol . 180, 47–53, 2015. https://doi.org/10.1016/j.biortech.2014.12.072.

174. D. Adachi, F. Koh, S. Hama, C. Ogino, A. Kondo, A robust whole-cell bio-catalyst that introduces a thermo- and solvent-tolerant lipase into Aspergillus oryzae cells: Characterization and application to enzymatic biodiesel production, Enzyme Microb. Technol . 52, 331–335, 2013. https://doi.org/10.1016/j.enzmictec.2013.03.005.

175. Y. Luo, Y. Zheng, Z. Jiang, Y. Ma, D. Wei, A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and bio-diesel production via transesterification, Appl. Microbiol. Biotechnol . 73, 349–355, 2006. https://doi.org/10.1007/s00253-006-0478-3.

176. J. Yan, X. Zheng, S. Li, A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: Preparation, characterization and application in biodiesel production, Bioresour. Technol . 151, 43–48, 2014. https://doi.org/10.1016/j.biortech.2013.10.037.

177. G.-C. Lee, L.-C. Lee, V. Sava, J.-F. Shaw, Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris., Biochem. J . 366, 603–611, 2002. https://doi.org/10.1042/BJ20020404.

178. A. Yoshida, S. Hama, N. Tamadani, H. Noda, H. Fukuda, A. Kondo, Continuous production of biodiesel using whole-cell biocatalysts: Sequential conversion of an aqueous oil emulsion into anhydrous product, Biochem. Eng. J . 68, 7–11, 2012. https://doi.org/10.1016/j.bej.2012.07.002.

179. D. Adachi, S. Hama, T. Numata, K. Nakashima, C. Ogino, H. Fukuda, A. Kondo, Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production, Bioresour. Technol . 102, 6723–6729, 2011. https://doi.org/10.1016/j.biortech.2011.03.066.

180. M. Raita, V. Champreda, N. Laosiripojana, Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system, Process Biochem . 45, 829–834, 2010. https://doi.org/10.1016/j.procbio.2010.02.002.

181. T.P. Korman, B. Sahachartsiri, D.M. Charbonneau, G.L. Huang, M. Beauregard, J.U. Bowie, Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution, Biotechnol. Biofuels . 6, 70, 2013. https://doi.org/10.1186/1754-6834-6-70.

182. S.H. Kim, S.J. Kim, S. Park, H.K. Kim, Biodiesel production using cross-linked Staphylococcus haemolyticus lipase immobilized on solid polymeric carriers, J. Mol. Catal. B Enzym . 85–86, 10–16, 2013. https://doi.org/10.1016/j.molcatb.2012.08.012.

183. A. Li, T.P.N. Ngo, J. Yan, K. Tian, Z. Li, Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease, Bioresour. Technol . 114, 725–729, 2012. https://doi.org/10.1016/j.biortech.2012.03.034.

184. F. Guan, P. Peng, G. Wang, T. Yin, Q. Peng, J. Huang, G. Guan, Y. Li, Combination of two lipases more efficiently catalyzes methanolysis of soybean oil for biodiesel production in aqueous medium, Process Biochem . 45, 1677–1682, 2010. https://doi.org/10.1016/j.procbio.2010.06.021.

185. T. Takaya, R. Koda, D. Adachi, K. Nakashima, J. Wada, T. Bogaki, C. Ogino, A. Kondo, Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae , Appl. Microbiol. Biotechnol . 90, 1171–1177, 2011. https://doi.org/10.1007/s00253-011-3186-6.

186. D. Huang, S. Han, Z. Han, Y. Lin, Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system, Biochem. Eng. J . 63, 10–14, 2012. https://doi.org/10.1016/j.bej.2010.08.009.

187. Z.L. Huang, T.X. Yang, J.Z. Huang, Z. Yang, Enzymatic production of bio-diesel from Millettia pinnata seed oil in ionic liquids, Bioenergy Res . 7, 1519–1528, 2014. https://doi.org/10.1007/s12155-014-9489-6.

188. T. Matsumoto, S. Takahashi, M. Kaieda, M. Ueda, A. Tanaka, H. Fukuda, A. Kondo, Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production, Appl. Microbiol. Biotechnol . 57, 515–520, 2001. https://doi.org/10.1007/s002530100733.

189. B. Zhang, Y. Weng, H. Xu, Z. Mao, Enzyme immobilization for biodiesel production, Appl. Microbiol. Biotechnol . 93, 61–70, 2012. https://doi.org/10.1007/s00253-011-3672-x.

190. R. Pogaku, A. Bono, C. Chu, Developments in sustainable chemical and bioprocess technology, Springer US, Boston, MA, 2013. https://doi.org/10.1007/978-1-4614-6208-8.

191. S.K. Narwal, R. Gupta, Biodiesel production by transesterification using immobilized lipase, Biotechnol. Lett . 35, 479–490, 2013. https://doi.org/10.1007/s10529-012-1116-z.

192. D. Brady, J. Jordaan, Advances in enzyme immobilisation, Biotechnol. Lett . 31, 1639–1650, 2009. https://doi.org/10.1007/s10529-009-0076-4.

193. M. Kalantari, M. Kazemeini, A. Arpanaei, Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures, Biochem. Eng. J . 79, 267–273, 2013. https://doi.org/10.1016/j.bej.2013.09.001.

194. S. Shah, S. Sharma, M.N. Gupta, Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil, Energy and Fuels . 18, 154–159, 2004. https://doi.org/10.1021/ef030075z.

195. S. Shah, S. Sharma, M.N. Gupta, Enzymatic transesterification for biodiesel production, Indian J. Biochem. Biophys . 40, 392–399, 2003. https://doi.org/10.1039/C6RA08062F.

196. P. Shao, X. Meng, J. He, P. Sun, Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock, Food Bioprod. Process . 86, 283–289, 2008. https://doi.org/10.1016/j.fbp.2008.02.004.

197. K. Ban, S. Hama, K. Nishizuka, M. Kaieda, T. Matsumoto, A. Kondo, H. Noda, H. Fukuda, Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production, J. Mol. Catal. - B Enzym . 17, 157–165, 2002. https://doi.org/10.1016/S1381-1177(02)00023-1.

198. M.G.M. Purwanto, M.V. Maretha, M. Wahyudi, M.T. Goeltom, Whole Cell Hydrolysis of Sardine (Sardinella Lemuru) Oil Waste Using Mucor Circinelloides NRRL 1405 Immobilized in Poly-urethane Foam, Procedia Chem . 14, 256–262, 2015. https://doi.org/10.1016/j.proche.2015.03.036.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biodiesel Technology and Applications»

Представляем Вашему вниманию похожие книги на «Biodiesel Technology and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biodiesel Technology and Applications»

Обсуждение, отзывы о книге «Biodiesel Technology and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x