Magnetic Nanoparticles in Human Health and Medicine

Здесь есть возможность читать онлайн «Magnetic Nanoparticles in Human Health and Medicine» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Magnetic Nanoparticles in Human Health and Medicine: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Magnetic Nanoparticles in Human Health and Medicine»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explores the application of magnetic nanoparticles in drug delivery, magnetic resonance imaging, and alternative cancer therapy  Magnetic Nanoparticles in Human Health and Medicine Chapters written by a panel of international specialists in the field of magnetic nanoparticles and their applications in biomedicine cover magnetic hyperthermia (MHT), MRI contrast agents, biomedical imaging, modeling and simulation, nanobiotechnology, toxicity issues, and more. Readers are provided with accurate information on the use of magnetic nanoparticles in diagnosis, drug delivery, and therapeutics—featuring discussion of current problems, proposed solutions, and future research directions. Topics include magnetic nanoparticles with antioxidant activity, iron oxide nanoparticles in nanomedicine, superparamagnetic hyperthermia in clinical trials, and simulating the physics of magnetic particle heating for biomedical applications. This comprehensive volume: 
Covers both general research on magnetic nanoparticles in medicine and specific applications in cancer therapeutics Discusses the use of magnetic nanoparticles in alternative cancer therapy by magnetic and superparamagnetic hyperthermia Explores targeted medication delivery using magnetic nanoparticles as a future replacement of conventional techniques Reviews the use of MRI with magnetic nanoparticles to increase the diagnostic accuracy of medical imaging 
 is a valuable resource for researchers in the fields of nanomagnetism, nanomaterials, magnetic nanoparticles, nanoengineering, biopharmaceuticals nanobiotechnologies, nanomedicine,and biopharmaceuticals, particularly those focused on cancer diagnosis and therapeutics.

Magnetic Nanoparticles in Human Health and Medicine — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Magnetic Nanoparticles in Human Health and Medicine», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table 1.1 Magnetic susceptibility values for different bulk magnetic materials.

Type of magnetic material Diamagnetic Paramagnetic Ferromagnetic
χ −(10 −4– 10 −6) ( χ < 0) 10 −3– 10 −5( χ > 0) 10 2– 10 5( χ ≫ 0)

When the size of the magnetic material, ferro‐ or ferrimagnetic, is reduced to the range of nm – tens of nm, it was found that the magnetic properties specific to the bulk change radically, regardless of the type of magnetic ordering (Caizer 2016). Thus, in the category of magnetic materials with magnetic ordering of ferromagnetic or ferrimagnetic type, a special category appears called superparamagnetic materials. This name was introduced by Bean (Bean and Livingston 1959) in order to distinguish this material from the bulk basic magnetic ones: paramagnetic and ferromagnetic/ferrimagnetic. This is because the material itself is ordered magnetically, ferro‐ or ferrimagnetic, but behaves in the external magnetic field like a paramagnetic material. This name was introduced considering that, at the microstructural level, we do not have individual atoms with magnetic moment isolated from each other, as in the case of paramagnetics, but a magnetic structure (magnetic domain) that contains a very large number of atoms with magnetic moments (even more greater than 10 5) coupled to each other (with magnetic ordering) as a result of the exchange or superexchange interaction. Superparamagnetic behavior is characteristic of magnetic materials with small sizes in the nanometers range, depending on the nature of the material.

In biomedical applications, the most used materials are those with magnetic ordering of ferrimagnetic or even ferromagnetic type because they present an intense magnetism and fast response to an external magnetic field. However, the most used in applications and much studied today in research for various applications are materials based on iron oxides (ferrimagnetic) (Smit and Wijin 1961) with the magnetite (Fe 3O 4) typical representative ( Figure 1.2). Magnetite is an inverse spinel (Fe 2+Fe 2 3+O 4 2−) with a cubic structure in which the magnetic cations of Fe 2+and Fe 3+are found in two magnetic subllatices A (tetrahedral) and B (octahedral) having opposite magnetizations: Fe 3+[Fe 2+Fe 3+] O 4 2, where the right parenthesis represents the ions from the sublatice B and Fe 3+, from outside, the parenthesis represents the ions from the sublatice A. However, recent experiments (Garcia and Subias 2004) have shown a difference in the electric charge of Fe(B) ions, where Fe 2.5+is present, as shown in Figure 1.2(Parkinson et al. 2012).

Figure 12 Fe 3O 4bulk unit cell inverse spinel structure Source Parkinson - фото 8

Figure 1.2 Fe 3O 4bulk unit cell (inverse spinel structure).

Source: Parkinson et al. (2012). CC BY 3.0.

The basic magnetic aspects of bulk magnetic material, ferromagnetic, or ferrimagnetic, and how they change in the case of nanomaterial, will be presented below considering the magnetic particles/nanoparticles for biomedical applications.

1.1.2 The Atomic Magnetic Moment, Magnetization, and Magnetic Moment of the Nanoparticle

In the case of a bulk paramagnetic, ferro‐, or ferrimagnetic material, the magnetism is due to the existence of the magnetic moment (total) at the atomic (or ionic/molecular) level (Kneller 1962; Jacobs and Bean 1963; Vonsovskii 1974; Caizer 2004a):

(1.1) Magnetic Nanoparticles in Human Health and Medicine - изображение 9

as a result of the spin–orbit coupling (vector summation of the spin magnetic moments (total) ( картинка 10) and the orbital magnetic moments (total) ( картинка 11): the vector model of the atom ( картинка 12= картинка 13+ In Eq 11 g Jis the spectroscopic splitting factor Lande factor at the - фото 14). In Eq. (1.1), g Jis the spectroscopic splitting factor (Lande factor) at the atomic level,

(1.2) m Jis the internal magnetic quantum number total which can take 2 J 1 - фото 15

m Jis the internal magnetic quantum number (total), which can take (2 J + 1) values (according to quantum physics, respectively – J , …, 0, …, + J ), and μ Bis the Bohr magnetone:

(1.3) Magnetic Nanoparticles in Human Health and Medicine - изображение 16

with the observables: e is the electron charge ( e = 1.6 × 10 −19C), m 0is the resting electron mass ( m 0= 9.1 × 10 −31kg), and h is the Planck constant ( h = 6.63 × 10 −34Js). In Eq. (1.2), L is the internal orbital quantum number (total), and S is the internal spin quantum number.

Macroscopically, the quantity that characterizes the bulk magnetic material, from a magnetic point of view, is the magnetization ( картинка 17), defined as a numerical quantity equal to the resulting magnetic moment ( картинка 18, being the total magnetic moment of the atomion Eq 11 and i the number of - фото 19being the total magnetic moment of the atom/ion ( Eq. 1.1), and i the number of atoms/ions in volume V ) of the volume unit (Caizer 2004a),

(1.4) respectively in the hypothesis of a continuous environment According to - фото 20

respectively, in the hypothesis of a continuous environment. According to formula (1.4), the magnetization vector картинка 21has the same direction and sense as the elementary magnetic moment vector Magnetic Nanoparticles in Human Health and Medicine - изображение 22.

In accordance with Eq. (1.4), the magnetic moment of a volume of magnetic material will be

(1.5) Magnetic Nanoparticles in Human Health and Medicine - изображение 23

In the case of reducing the volume of ferrous‐ or ferrimagnetic material in the nanometer range (nm – tens of nm), as in the case of magnetic nanoparticles, when there is a single magnetic domain (Weiss domain) (or in the case of a nanoparticle volume even smaller than the one corresponding to a magnetic domain), the magnetization ( M ) is uniform in the finite volume of material. Thus, in this case, of the single‐domain magnetic nanoparticle, the resulting magnetic moment can be written as (Caizer 2016)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Magnetic Nanoparticles in Human Health and Medicine»

Представляем Вашему вниманию похожие книги на «Magnetic Nanoparticles in Human Health and Medicine» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Magnetic Nanoparticles in Human Health and Medicine»

Обсуждение, отзывы о книге «Magnetic Nanoparticles in Human Health and Medicine» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x