Magnetic Nanoparticles in Human Health and Medicine

Здесь есть возможность читать онлайн «Magnetic Nanoparticles in Human Health and Medicine» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Magnetic Nanoparticles in Human Health and Medicine: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Magnetic Nanoparticles in Human Health and Medicine»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explores the application of magnetic nanoparticles in drug delivery, magnetic resonance imaging, and alternative cancer therapy  Magnetic Nanoparticles in Human Health and Medicine Chapters written by a panel of international specialists in the field of magnetic nanoparticles and their applications in biomedicine cover magnetic hyperthermia (MHT), MRI contrast agents, biomedical imaging, modeling and simulation, nanobiotechnology, toxicity issues, and more. Readers are provided with accurate information on the use of magnetic nanoparticles in diagnosis, drug delivery, and therapeutics—featuring discussion of current problems, proposed solutions, and future research directions. Topics include magnetic nanoparticles with antioxidant activity, iron oxide nanoparticles in nanomedicine, superparamagnetic hyperthermia in clinical trials, and simulating the physics of magnetic particle heating for biomedical applications. This comprehensive volume: 
Covers both general research on magnetic nanoparticles in medicine and specific applications in cancer therapeutics Discusses the use of magnetic nanoparticles in alternative cancer therapy by magnetic and superparamagnetic hyperthermia Explores targeted medication delivery using magnetic nanoparticles as a future replacement of conventional techniques Reviews the use of MRI with magnetic nanoparticles to increase the diagnostic accuracy of medical imaging 
 is a valuable resource for researchers in the fields of nanomagnetism, nanomaterials, magnetic nanoparticles, nanoengineering, biopharmaceuticals nanobiotechnologies, nanomedicine,and biopharmaceuticals, particularly those focused on cancer diagnosis and therapeutics.

Magnetic Nanoparticles in Human Health and Medicine — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Magnetic Nanoparticles in Human Health and Medicine», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To conclude, if in the case of bulk magnetic material, the saturation magnetization is a well‐defined value, being a material parameter, characteristic of the substance type, in the case of nanoparticles it is generally smaller, and decreases with the decrease in diameter to nanometers size. This is a very important aspect that must be taken into account in biomedical applications. Thus, in order not to introduce errors in the application of magnetic nanoparticles, it is recommended, before conducting any experiment, to determine/measure the saturation magnetization of the nanoparticles, and also the variation of saturation magnetization with temperature, if there is such a dependency in the targeted application.

1.1.5 Magnetic Anisotropy

Experimentally, it was found that in the case of ferro‐ or ferrimagnetic crystalline materials, there is a dependence of the magnetization of the single crystal on the crystallographic directions. The dependence of the magnetization of the crystalline magnetic material on the crystallographic axes determines the magnetocrystalline anisotropy (Kneller 1962; Caizer 2004a, 2019). Thus, the magnetization curves that are obtained in the same external magnetic field depend on the direction in which the crystalline material is magnetized. This type of magnetic anisotropy is characteristic of all bulk single crystalline (ferro‐ or ferromagnetic) magnetic materials (Fe, Co, Ni, Cd, their alloys, Fe oxides [Fe 3O 4, γ‐Fe 2O 3], etc.).

For example, in the case of the Ni bulk single crystal ferromagnetic material, which crystallizes in the cube system with centered volume (vcc), the magnetization curves have the shape shown in Figure 1.8(Baberschke 2001). Thus, the magnetization is made easiest following the crystallographic direction [1,1,1], which represents the large diagonal of the cube, and its magnetization is made the hardest following the crystallographic direction [1,0,0], which is the edge of the cube. The direction [1,1,1] in this case is called the direction or axis of easy magnetization (e.m.a.), and the direction [1,0,0] is called the axis of hard magnetization (h.m.a).

Figure 18 a The crystallographic systems for Nisingle crystal Source - фото 40

Figure 1.8 (a) The crystallographic systems for Ni‐single crystal.

Source: Caizer (2016). Reprinted by permission from Springer Nature;

(b) Room temperature magnetization curves for Ni along the easy ([111]) and hard ([100]) direction.

Source: Based on Wijn (1986).

In the case of bulk ferromagnetic monocrystalline material with cubic symmetry, the energy of magnetocrystalline anisotropy can be determined with the following formula:

(1.15) written as a series development of powers using the model proposed by Beker - фото 41

written as a series development of powers using the model proposed by Beker, Doring, Akulov, Mason (Kneller 1962; Herpin 1968), based on the symmetry properties of the crystal. In general, it was found that it is sufficient to use only the first two terms of development, in K 1and K 2. In Eq. (1.15), K 1and K 2are the magnetocystalline anisotopy constants, and α 1, α 2and α 3are the cosine directors of the vector of spontaneous magnetization ( M s) in relation to the main crystallographic axes of the cube. In some cases, even the first term of development is sufficient. For example, in the case of the ferromagnetic Fe single crystal, K 1= 4.8 × 10 4J m −3and K 2= 5 × 10 3J m −3were found, where K 1is in this case with approximately one order of magnitude larger than K 2.

In the case of uniaxial, hexagonal symmetry, as in the case of the ferromagnetic Co monocrystalline ( Figure 1.9), the magnetocrystalline anisotropy energy is expressed as a function of the angle fi between the spontaneous magnetization vector M sand the main axis of symmetry:

(1.16) Figure 19 The crystallographic systems for Cosingle crystal Source Caizer - фото 42

Figure 19 The crystallographic systems for Cosingle crystal Source Caizer - фото 43

Figure 1.9 The crystallographic systems for Co‐single crystal.

Source: Caizer (2016). Reprinted by permission from Springer Nature.

Also, in this case, the first two terms are used (in K 1and K 2) in the energy expression of uniaxial magnetocrystalline anisotropy.

In this case, the main axis of symmetry is the easy magnetization axis (e.m.a), and the direction perpendicular to it is the hard magnetization axis (h.m.a).

In the case of bulk magnetic material, there is another important form of magnetic anisotropy, which should not be neglected as it can become dominant in some cases. This is the anisotropy of the shape (Kneller 1962; Caizer 2004a), which shows that the magnetization of a sample depends on its shape.

As a general case, approximating the shape of the sample by the ellipsoid of revolution: a > b = c , where a , b , and c are the semiaxes of the ellipsoid ( Figure 1.10), the anisotropy energy due to the shape of the sample is expressed by the following formula:

(1.17) where N aand N bare the demagnetization factors along the a and b directions of - фото 44

where N aand N bare the demagnetization factors along the a and b directions of the ellipsoid, and θ is the angle that the spontaneous magnetization vector M smakes with the main axis ( a ) of the ellipsoid.

Figure 110 The crystal approximated by an ellipsoid general case Source - фото 45

Figure 1.10 The crystal approximated by an ellipsoid (general case).

Source: Caizer (2019). Reprinted by permission of Taylor & Francis Ltd.

When the magnetization of the ellipsoid in the external magnetic field is done along the direction of the a ‐axis, the shape anisotropy energy is minimum (or zero). In contrast, when magnetization is done along a direction perpendicular to the a ‐axis (e.g. the b , c , or other directions), the shape anisotropy energy is maximum. In the latter case, taking into account the Eqs (1.17)and (1.16), the shape anisotropy constant can be expressed by the following formula:

(1.18) in the approximation of the first order When the magnetic material is reduced - фото 46

in the approximation of the first order.

When the magnetic material is reduced to the nanoscale, these forms of magnetic anisotropy remain valid. In addition, in the case of magnetic nanoparticles, the shape anisotropy becomes very important, reaching in some cases even larger, or much larger than the magnetocrystalline anisotropy. Thus, the neglect of this first aspect leads to important errors from a magnetic point of view, incompatible with the physical reality. For example, if the nanoparticle is spherical in shape ( Figure 1.5), the semiaxes a , b , c become equal ( Figure 1.10), and equal to the radius of the sphere. According to Eqs. the shape anisotropy constant in this case is zero, as is the energy. So there is no shape anisotropy in the case of spherical nanoparticles. In contrast, in the case of elongated nanoparticles, when ab = c , and when they are soft magnetic (magnetocrystalline anisotropy is reduced), the shape anisotropy exceeds the magnetocrystalline anisotropy, or even becomes dominant. This is an important aspect in the case of magnetic nanoparticles that must be taken into account not only in practical applications, including biomedical ones, but also in theoretical calculations and models/experiments.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Magnetic Nanoparticles in Human Health and Medicine»

Представляем Вашему вниманию похожие книги на «Magnetic Nanoparticles in Human Health and Medicine» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Magnetic Nanoparticles in Human Health and Medicine»

Обсуждение, отзывы о книге «Magnetic Nanoparticles in Human Health and Medicine» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x