Magnetic Nanoparticles in Human Health and Medicine

Здесь есть возможность читать онлайн «Magnetic Nanoparticles in Human Health and Medicine» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Magnetic Nanoparticles in Human Health and Medicine: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Magnetic Nanoparticles in Human Health and Medicine»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explores the application of magnetic nanoparticles in drug delivery, magnetic resonance imaging, and alternative cancer therapy  Magnetic Nanoparticles in Human Health and Medicine Chapters written by a panel of international specialists in the field of magnetic nanoparticles and their applications in biomedicine cover magnetic hyperthermia (MHT), MRI contrast agents, biomedical imaging, modeling and simulation, nanobiotechnology, toxicity issues, and more. Readers are provided with accurate information on the use of magnetic nanoparticles in diagnosis, drug delivery, and therapeutics—featuring discussion of current problems, proposed solutions, and future research directions. Topics include magnetic nanoparticles with antioxidant activity, iron oxide nanoparticles in nanomedicine, superparamagnetic hyperthermia in clinical trials, and simulating the physics of magnetic particle heating for biomedical applications. This comprehensive volume: 
Covers both general research on magnetic nanoparticles in medicine and specific applications in cancer therapeutics Discusses the use of magnetic nanoparticles in alternative cancer therapy by magnetic and superparamagnetic hyperthermia Explores targeted medication delivery using magnetic nanoparticles as a future replacement of conventional techniques Reviews the use of MRI with magnetic nanoparticles to increase the diagnostic accuracy of medical imaging 
 is a valuable resource for researchers in the fields of nanomagnetism, nanomaterials, magnetic nanoparticles, nanoengineering, biopharmaceuticals nanobiotechnologies, nanomedicine,and biopharmaceuticals, particularly those focused on cancer diagnosis and therapeutics.

Magnetic Nanoparticles in Human Health and Medicine — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Magnetic Nanoparticles in Human Health and Medicine», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Valentina Peluso

Department of Neurosciences Reproductive and Odontostomatological Sciences University of Naples Federico II Naples, Italy

Francis Perton

Université de Strasbourg, CNRS Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, France

John Philip

Smart Materials SectionCorrosion Science and Technology Division Materials Characterization Group Metallurgy and Materials Group Indira Gandhi Centre for Atomic Research, HBNI Kalpakkam, Tamil Nadu, India

Rodolfo D. Piazza

Magnetic Materials and Colloids Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara, SP, Brazil

Gabriel C. Pinto

Magnetic Materials and Colloids Laboratory Institute of Chemistry, São Paulo State University (UNESP) Araraquara, SP, Brazil

Mahendra Rai

UGC – Basic Science Research Faculty Department of Biotechnology SGB Amravati University Amravati, Maharashtra, India

Surojit Ranoo

Smart Materials Section Corrosion Science and Technology Division Materials Characterization Group Metallurgy and Materials GroupIndira Gandhi Centre for Atomic Research, HBNI Kalpakkam, Tamil Nadu, India

Sundas Riaz

Polymer Research Lab School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad, Pakistan

Maritina Rouchota

Bioemission Technology Solutions (BIOEMTECH) Lefkippos Attica Technology Park NCSR “Demokritos” Ag. Paraskevi‐Athens, Greece

Teresa Russo

Institute of Polymers Composites and Biomaterials National Research Council of Italy Naples, Italy

Jaime Santoyo‐Salazar

Departmento de Física Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional CINVESTAV-IPN, Av. IPN 2508 Zacatenco, Ciudad de Mexico, Mexico

Sophia Sarpaki

Bioemission Technology Solutions (BIOEMTECH) Lefkippos Attica Technology Park NCSR “Demokritos” Ag. Paraskevi-Athens, Greece

Gul Shahnaz

Department of Pharmacy Faculty of Biological Sciences Quaid-i-Azam University Islamabad, Pakistan

Carolyn Shasha

Department of Physics University of Washington Seattle, WA, USA

Ioana Slabu

Applied Medical Engineering Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen, Germany

Codruta Soica

Faculty of Pharmacy Department of Toxicology “Victor Babes” University of Medicine and Pharmacy Timisoara, Romania

Gabriela Fabiola Ştiufiuc

Faculty of Physics “Babes‐Bolyai” University Cluj‐Napoca, Romania

Rareș Ionuț Ştiufiuc

Department of Pharmaceutical Physics and Biophysics “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj‐Napoca, Romania;

Med Future Research Center for Advanced Medicine “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj‐Napoca, Romania

Romulus Tetean

Faculty of Physics “Babes‐Bolyai” University Cluj‐Napoca, Romania

Boyan Todorov

Faculty of Chemistry and Pharmacy Sofia University “St. Kliment Ohridski” Sofia, Bulgaria

Valentin Toma

Med Future Research Center for Advanced Medicine “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj‐Napoca, Romania

Francois Vernay

Laboratoire PROMES CNRS UPR 8521 Université de Perpignan Via Domitia Rambla de la Thermodynamique Tecnosud, Perpignan, France

1 An Introduction to Magnetic Nanoparticles: From Bulk to Nanoscale Magnetism and Their Applicative Potential in Human Health and Medicine

Costica Caizer1, Shital Bonde2, and Mahendra Rai2

1 Physics Faculty, Department of Physics, West University of Timisoara, Timisoara, Romania

2 UGC – Basic Science Research Faculty, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India

1.1 Magnetism of Nanoparticles: From Bulk to Nanoscale

1.1.1 Introduction

The bulk magnetic material has specific magnetic properties depending on the type of magnetic material and the form of magnetic ordering (Smit and Wijin 1961; Kneller 1962; Jacobs and Bean 1963; Vonsovskii 1974; Kojima 1982; Rosensweig 1985; Cullity and Graham 2009). Magnetic materials can be diamagnetic, paramagnetic, and with ordered forms of magnetism. The magnetic ordered materials can be ferromagnetic, antiferomagnetic, ferimagnetic, and some more complex magnetic structures. Diamagnetic materials show a very weak magnetization ( M ) induced by the application of the external magnetic field ( H ) ( Figure 1.1a‐(I)), in the opposite direction to the magnetic field ( Figure 1.1b‐(I)), due to the phenomenon of electromagnetic induction (Faraday) that modifies the orbital and spin motion of atomic electrons. In the absence of the magnetic field, this material has no atomic (or molecular) magnetic moment. The paramagnetic materials show a weak magnetization in an external magnetic field ( Figure 1.1a‐(II)), but in the same direction of the applied magnetic field ( Figure 1.1b‐(II)), as a result of the reorientation of the permanent atomic magnetic moments in the magnetic field. This material has, at molecular level, permanent magnetic moments (in the absence of the external magnetic field), which does not interact magnetically with each other. In the case of ferromagnetic materials, an intense magnetization is obtained in the presence of the external magnetic field ( Figure 1.1a‐(III)), in the same direction with the applied magnetic field ( Figure 1.1b‐(III)), due to the existence of ordered (aligned) atomic (or molecular) magnetic moments under the action of exchange forces (exchange interaction) existing at the molecular level of a quantum nature.

Figure 11 a Schematic field dependencies of magnetization of I - фото 7

Figure 1.1 (a) Schematic field dependencies of magnetization of (I) diamagnetic, (II) paramagnetic, and (III) ferromagnetic materials.

Source: Yamauchi (2008). Reproduced with permission from John Wiley & Sons.

(b) Schematic representation of the magnetization of different magnetic materials in the external magnetic field: (I) diamagnetic, (II) paramagnetic, (III) ferromagnetic.

Source: Caizer (2013). Eurobit Publishing.

In the ferromagnetic crystal, the atoms with spin magnetic moment (the orbital magnetic moment being frozen by the presence of the crystalline electric field) are located at small distances between them, thus, generating the exchange interaction that aligns the spin magnetic moments over large spatial atomic distances, which can reach up to tens of microns (μm) (magnetic domains) (Caizer 2004a). In the antiferromagnetic crystal, the equal atomic magnetic moments are aligned to 180°, thus existing as a compensation for these, so that in the absence of the external magnetic field, the magnetization is nonexistent while in the presence of a magnetic field that is very low. On the other hand, in the case of ferrimagnetics, where, in the absence of the external magnetic field, there is a noncompensation of the magnetic moments aligned to 180 as a result of the exchange interaction (more precisely a superexchange), and there will be a significantly higher magnetization in the presence of the external magnetic field, but of a lower value compared to ferromagnetics.

A classification of the diamagnetic, paramagnetic, and ferromagnetic materials, depending on the amplitude of the magnetic susceptibility ( χ ) (the intrinsic parameter of magnetic materials) is given below (Caizer 2013), and Table 1.1shows the specific value ranges to magnetic susceptibility for different types of magnetic materials/substances (LIO – linear, isotropic, and homogeneous), without there being a strict delimitation between them.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Magnetic Nanoparticles in Human Health and Medicine»

Представляем Вашему вниманию похожие книги на «Magnetic Nanoparticles in Human Health and Medicine» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Magnetic Nanoparticles in Human Health and Medicine»

Обсуждение, отзывы о книге «Magnetic Nanoparticles in Human Health and Medicine» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x