Maria Cristina Mariani - Data Science in Theory and Practice

Здесь есть возможность читать онлайн «Maria Cristina Mariani - Data Science in Theory and Practice» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science in Theory and Practice: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science in Theory and Practice»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

DATA SCIENCE IN THEORY AND PRACTICE delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs,
will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Data Science in Theory and Practice — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science in Theory and Practice», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Therefore is negative definite Definition 216 Negative semidefinite - фото 143

Therefore, картинка 144is negative definite.

Definition 2.16 (Negative semidefinite matrix)A matrix Data Science in Theory and Practice - изображение 145is called negative semidefinite if, for any vector Data Science in Theory and Practice - изображение 146, we have

Data Science in Theory and Practice - изображение 147

We state the following theorem without proof.

Theorem 2.1

A 2 by 2 symmetric matrix

Data Science in Theory and Practice - изображение 148

is:

1 positive definite if and only if and det

2 negative definite if and only if and det

3 indefinite if and only if det .

2.3 Random Variables and Distribution Functions

We begin this section with the definition of картинка 149‐algebra.

Definition 2.17 (σ‐algebra)A картинка 150‐algebra картинка 151is a collection of sets картинка 152of картинка 153satisfying the following condition:

1 .

2 If then its complement .

3 If is a countable collection of sets in then their union .

Definition 2.18 (Measurable functions)A real‐valued function картинка 154defined on картинка 155is called measurable with respect to a sigma algebra in that space if the inverse image of the set defined as is a set in - фото 156in that space if the inverse image of the set defined as is a set in algebra - фото 157, defined as is a set in algebra for all Borel sets - фото 158is a set in картинка 159‐algebra картинка 160, for all Borel sets картинка 161of картинка 162. Borel sets are sets that are constructed from open or closed sets by repeatedly taking countable unions, countable intersections and relative complement.

Definition 2.19 (Random vector)A random vector картинка 163is any measurable function defined on the probability space картинка 164with values in картинка 165( Table 2.1).

Measurable functions will be discussed in detail in Section 20.5.

Suppose we have a random vector картинка 166defined on a space картинка 167. The sigma algebra generated by картинка 168is the smallest sigma algebra in картинка 169that contains all the pre images of sets in through That is This abstract concept is necessary to make sure that - фото 170through That is This abstract concept is necessary to make sure that we may - фото 171. That is

This abstract concept is necessary to make sure that we may calculate any - фото 172

This abstract concept is necessary to make sure that we may calculate any probability related to the random variable картинка 173.

Any random vector has a distribution function, defined similarly with the one‐dimensional case. Specifically, if the random vector Data Science in Theory and Practice - изображение 174has components Data Science in Theory and Practice - изображение 175, its cumulative distribution function or cdf is defined as:

Associated with a random variable and its cdf is another function called - фото 176

Associated with a random variable картинка 177and its cdf картинка 178is another function, called the probability density function (pdf) or probability mass function (pmf). The terms pdf and pmf refer to the continuous and discrete cases of random variables, respectively.

Table 2.1 Examples of random vectors.

Experiment Random variable
Toss two dice картинка 179= sum of the numbers
Toss a coin 10 times картинка 180= sum of tails in 10 tosses

Definition 2.20 (Probability mass function)The pmf of a discrete random variable is given by Definition 221 Probability density functionThe pdf - фото 181is given by

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science in Theory and Practice»

Представляем Вашему вниманию похожие книги на «Data Science in Theory and Practice» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science in Theory and Practice»

Обсуждение, отзывы о книге «Data Science in Theory and Practice» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x