Change Detection and Image Time Series Analysis 2

Здесь есть возможность читать онлайн «Change Detection and Image Time Series Analysis 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Change Detection and Image Time Series Analysis 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Change Detection and Image Time Series Analysis 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Change Detection and Image Time Series Analysis 2

Change Detection and Image Time Series Analysis 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Change Detection and Image Time Series Analysis 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As proven in Laferté et al. (2000) and Hedhli et al. (2016), under suitable conditional independence assumptions, the posterior marginal картинка 65can be recursively expressed as a function of the posterior marginal картинка 66of the parent node s– in the same quad-tree and, in the case k = 2, also of the posterior marginal of the parent node s in the previous quadtree 15 where - фото 67of the parent node s =in the previous quad-tree:

[1.5] Change Detection and Image Time Series Analysis 2 - изображение 68

where Change Detection and Image Time Series Analysis 2 - изображение 69collects all sites except the root in the k -th quad-tree ( k = 1, 2) and X sis a vector collecting the features of all of the descendants of site s . Through this formulation, MPM takes into consideration the information conveyed by the input multisensor data within the labeling of each site картинка 70

1.2.3. Hierarchical model associated with the second proposed method

In the second proposed method, the case-specific problem of jointly classifying a multimission, multifrequency (radar X band, radar C band and optical VNIR) and multiresolution series of images acquired by COSMO-SkyMed, RADARSAT-2 and Pléiades is addressed. All of these sensors support multiple spatial resolutions, up to 0.5 m for Pléiades, approximately 1 m for COSMO-SkyMed and 1 m × 2 m for RADARSAT-2.

Let us propose a time series of three images, collected by COSMO-SkyMed, RADARSAT-2 and Pléiades, in the same area, at times close enough to assume land cover stability. A case-specific hierarchical model, again using two quad-trees in cascade, is introduced to generate a supervised classification map at the finest among the spatial resolutions of the input images in the series. Unlike in the case of the hierarchical model of the first proposed approach, in which distinct quad-trees are related to different sensors, in this second approach, for each of the two considered radar sensors, the input image is included in a separate quad-tree according to its spatial resolution (see Figure 1.5). These resolutions are generally expected to be coarser than the finest resolution that is observed through Pléiades. Hence, the input Pléiades data are inserted in the finest resolution layers of both aforementioned quad-trees (see Figure 1.5). The rationale is to both benefit from all input multisensor imagery and to map land cover at the finest resolution available. Empty layers of each of the two quad-trees are filled in with wavelet transforms computed from the Pléiades image included in the leaves layer (see Figure 1.5). The Markovian formulation defined in the previous section, the recursive equations [1.5]and the remarks on the power-of-2 relation among the resolutions of the input images in the series are also valid in this case.

Figure 15 Cascaded quadtrees associated with the second proposed method In - фото 71

Figure 1.5. Cascaded quad-trees associated with the second proposed method. In this example, we assume that the input time series includes Pléiades data at a 0.5 m resolution, COSMO-SkyMed spotlight data at a 1 m resolution and RADARSAT-2 data sampled on a 2 m pixel lattice. Accordingly, the Pléiades image is included in the leaves layer of both quad-trees. The COSMO-SkyMed and RADARSAT-2 images are inserted in the intermediate layers of separate quad-trees, according to their resolutions. The empty layers of both quad-trees are filled in with wavelet transforms of the Pléiades imagery

1.2.4. Multisensor hierarchical MPM inference

Equation [1.5]allows us to calculate the posterior marginal картинка 72at each site Change Detection and Image Time Series Analysis 2 - изображение 73of the second quad-tree (except the root) recursively, as long as the probabilities Change Detection and Image Time Series Analysis 2 - изображение 74become known. In particular, the focus on the second quad-tree is consistent with the cascade approach used within the proposed methods: given the input time series, the output classification map is obtained on the leaves of this second quad-tree (or on the leaves of the last quad-tree in the case of a longer time series).

Specifically, under appropriate assumptions, in Hedhli et al. (2016) we proved that, for all Change Detection and Image Time Series Analysis 2 - изображение 75

[1.6] Change Detection and Image Time Series Analysis 2 - изображение 76

where Change Detection and Image Time Series Analysis 2 - изображение 77is the parent–child transition probability across the two quad-trees, P(cs) is the prior probability, P(cs- |cs=) is the transition probability between two sites at the same scale and is the partial posterior marginal probability Given the obvious constraint - фото 78is the partial posterior marginal probability. Given the obvious constraint Change Detection and Image Time Series Analysis 2 - изображение 79 equation [1.6]determines Change Detection and Image Time Series Analysis 2 - изображение 80uniquely on all sites картинка 81To determine these probabilities, the approach developed in Hedhli et al. (2016) for the multitemporal single-sensor case is generalized to the multisensor tasks considered here. This process is formalized within three recursive passes across the second quad-tree – one bottom-up and two top-down passes – which are described in the next sections.

1.2.4.1. Initializing on the first quad-tree

First, in order to initialize the process, classification is performed using only the data included in the first quad-tree through a classical MPM on a single quad-tree. We refer the reader to Laferté et al. (2000) for more detail. Here, we only briefly recall that the algorithm is initialized by choosing the prior distribution on the root of this first quad-tree. In order to favor spatial regularity, this prior is selected here according to a Potts MRF model (Li 2009; Kato and Zerubia 2012). Details can be found in Hedhli et al. (2016). From the perspective of the classification of the input series of multisensor images, the key point is that, after this initialization stage, the posterior marginal is known for each site of the first quadtree Furthermore is also obtained a - фото 82is known for each site of the first quadtree Furthermore is also obtained as an intermediate - фото 83of the first quad-tree. Furthermore, картинка 84is also obtained as an intermediate byproduct on the same sites.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Change Detection and Image Time Series Analysis 2»

Представляем Вашему вниманию похожие книги на «Change Detection and Image Time Series Analysis 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Change Detection and Image Time Series Analysis 2»

Обсуждение, отзывы о книге «Change Detection and Image Time Series Analysis 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x