Change Detection and Image Time Series Analysis 2

Здесь есть возможность читать онлайн «Change Detection and Image Time Series Analysis 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Change Detection and Image Time Series Analysis 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Change Detection and Image Time Series Analysis 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Change Detection and Image Time Series Analysis 2

Change Detection and Image Time Series Analysis 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Change Detection and Image Time Series Analysis 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In this framework, two specific algorithms are defined. In the first one, the k -th image in the series is assigned to a separate quad-tree based on its own spatial resolution. A hierarchical MRF is defined on this quad-tree topology, and inference on the resulting probabilistic graphical model is addressed using the Bayesian marginal posterior mode (MPM) criterion (Kato and Zerubia 2012). In the second proposed algorithm, the focus is on a specific case of multimission, multifrequency and multiresolution time series: multifrequency X-band COSMO-SkyMed and C-band RADARSAT-2 SAR images are used alongside optical visible and near-infrared (VNIR) Pléiades data. This scenario is of special current interest, both because of the potential of exploiting the synergy among these missions and especially in view of the recent COSMO-SkyMed Second Generation and RADARSAT Constellation programs. In the case of the second method, different quad-trees are also used, but both optical and SAR data are associated with each quad-tree in order to benefit from the finest resolution available from the considered sensors. Both approaches exploit the potential of hierarchical probabilistic graphical models (Kato and Zerubia 2012) to address challenging problems of multimodal classification of an image time series.

1.2.2. Hierarchical model associated with the first proposed method

Let us first define the multiple quad-tree structure associated with the first proposed method. The K images Change Detection and Image Time Series Analysis 2 - изображение 14in the series are included in the finest-scale layers (i.e. the leaves) of K distinct quad-trees. The coarser-scale layers of each quad-tree are filled in by applying wavelet transforms to the image on the finest-scale layer (Mallat 2008). The roots of the K quad-trees are assumed to correspond to the same spatial resolution. The rationale of this hierarchical structure is that each image in the input series originates from a separate multiscale quad-tree, generally with a different number of layers and the input image on the leaves, and that the roots of these quad-trees share a common spatial resolution (see Figure 1.4). This graph topology implicitly means that the spatial resolutions of the input images in the series are in a power-of-2 mutual relation. In general terms, this is a restriction but when concerning current high-resolution satellite missions, this condition is easily met up to possible minor resampling.

Let картинка 15be the image associated with the картинка 16-th layer of the k -th quad-tree in the series. We will index the common root with Change Detection and Image Time Series Analysis 2 - изображение 17= 0 and the leaves of the k -th quad-tree with Change Detection and Image Time Series Analysis 2 - изображение 18coincides with the original input image Change Detection and Image Time Series Analysis 2 - изображение 19The images Change Detection and Image Time Series Analysis 2 - изображение 20in the other layers Change Detection and Image Time Series Analysis 2 - изображение 21have been obtained through wavelets from Change Detection and Image Time Series Analysis 2 - изображение 22The whole time series of multiscale images, either acquired by the considered sensors or obtained through wavelets, will be denoted as We will also indicate as the pixel lattice of the th layer of the - фото 23.

We will also indicate as the pixel lattice of the th layer of the k th quadtree We will de - фото 24the pixel lattice of the th layer of the k th quadtree We will denote as s p q the coordinate - фото 25-th layer of the k -th quadtree We will denote as s p q the coordinate pair of a generic pixel in one of - фото 26. We will denote as s = (p, q) the coordinate pair of a generic pixel in one of these layers картинка 27. Following the literature of hierarchical MRFs, the site will be named s in the following. Sites in the described quad-tree structure are linked by parent–child relations – within each quad-tree and across consecutive quad-trees – as a function of their spatial scale. Specifically, if is a site in the th layer of the k th quadtree and is not on the ro - фото 28is a site in the Change Detection and Image Time Series Analysis 2 - изображение 29-th layer of the k -th quadtree and Change Detection and Image Time Series Analysis 2 - изображение 30is not on the root layer, then Change Detection and Image Time Series Analysis 2 - изображение 31indicates its parent node in the same quad-tree ( k = 1, 2,..., K ). Similarly, if Change Detection and Image Time Series Analysis 2 - изображение 32with Change Detection and Image Time Series Analysis 2 - изображение 33i.e. s is not on the leaves layer, then Change Detection and Image Time Series Analysis 2 - изображение 34denotes the set of its four children nodes in the same quad-tree. Finally, if Change Detection and Image Time Series Analysis 2 - изображение 35with Change Detection and Image Time Series Analysis 2 - изображение 36and Change Detection and Image Time Series Analysis 2 - изображение 37i.e. if s is neither in the first quad-tree of the series nor in the root of the other quad-trees, then Change Detection and Image Time Series Analysis 2 - изображение 38indicates its parent node in the ( k – 1)-th quad-tree, i.e. in the quad-tree associated with the previous image of the series (see Figure 1.4). From a graph-theoretic perspective, if the sites in the quad-trees are meant as nodes in a graph, then the pairs ( s, s– ), ( s, s= ) and ( s, r ) with define the corresponding edges Figure 14 Quadtrees associated with the - фото 39define the corresponding edges.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Change Detection and Image Time Series Analysis 2»

Представляем Вашему вниманию похожие книги на «Change Detection and Image Time Series Analysis 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Change Detection and Image Time Series Analysis 2»

Обсуждение, отзывы о книге «Change Detection and Image Time Series Analysis 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x