Distributed Acoustic Sensing in Geophysics

Здесь есть возможность читать онлайн «Distributed Acoustic Sensing in Geophysics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Distributed Acoustic Sensing in Geophysics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Distributed Acoustic Sensing in Geophysics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Distributed Acoustic Sensing in Geophysics
Distributed Acoustic Sensing in Geophysics Methods and Applications Distributed Acoustic Sensing (DAS) is a technology that records sound and vibration signals along a fiber optic cable. Its advantages of high resolution, continuous, and real-time measurements mean that DAS systems have been rapidly adopted for a range of applications, including hazard mitigation, energy industries, geohydrology, environmental monitoring, and civil engineering.
presents experiences from both industry and academia on using DAS in a range of geophysical applications. Volume highlights include: The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Distributed Acoustic Sensing in Geophysics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Distributed Acoustic Sensing in Geophysics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where comb ( z ) is the Dirac comb function, or sampling operator. If the gauge length is s times larger than sampling distance, L 0= s L S, s = 1, 2…, then r ( z ) = r ( zL 0), and the reflectivity function r ( z )can be taken out of the brackets:

Figure 125 Optical fiber with defined scatter center zones and the - фото 66

Figure 1.25 Optical fiber with defined scatter center zones and the corresponding Doppler shifted angular frequency sampled between the zones. The length occupied by optical pulse is less than the distance between the zones. The gray line corresponds to spatially integrated DAS output, following a linear spline approximation.

(1.36) To prevent crossinterference and fading the spatial length of the optical - фото 67

To prevent cross‐interference and fading, the spatial length of the optical pulse should be smaller or equal to the distance between scatter center zones, so the spatial sampling of the optical field ( Equation 1.35) can be represented by a train of pulses:

(1.37) The optical pulses from each zone are separated see Figure 125 so the - фото 68

The optical pulses from each zone are separated (see Figure 1.25), so the maximum signal intensity and maximum SNR can be delivered if the pulsewidth is equal to the sampling distance, or τ ( z ) = θ ( z + L S) − θ ( z ), where θ ( z ) is the Heaviside step function whose value is 0 for negative argument and 1 for positive argument. In this case, intensity can be calculated from the interference between pulses with the same index j , and, for each pulse, an acoustic signal A ( z ) = F · ∂Φ/ ∂t , where Φ = ΔΩ( z ) t can be recovered from Equation 1.34using A 0from Equation 1.14as:

(1.38) where A 0 115 nm Equation 138can also be represented in convolution as - фото 69

where A 0= 115 nm . Equation 1.38can also be represented in convolution as:

(1.39) The main parameter for spatial resolution is still the gauge length L 0 and - фото 70

The main parameter for spatial resolution is still the gauge length L 0, and the sampling distance can be chosen to have two points per gauge length L S= L 0/2. We are considering here the physical spatial sampling, which is defined by the optical configuration, keeping in mind that the photocurrent sampling can have a higher rate. The difference from conventional fiber is an absence of averaging, as the detected signal is deterministic for engineered fiber, and excessive noise from non‐averaged components will hence disappear. Also, the generated optical field can be significantly larger than with conventional Rayleigh backscattering, so the shot noise limitation can be reduced significantly.

The velocity field can be recovered by spatial integration starting from a motionless point as:

(1.40) So Equation 139can be transformed to 141 Formally the engineered fiber - фото 71

So Equation 1.39can be transformed to:

(1.41) Formally the engineered fiber DAS signal expression Equation 141 looks - фото 72

Formally, the engineered fiber DAS signal expression ( Equation 1.41) looks similar to that for standard fiber signal ( Equation 1.27). If, say, L 0= L S, then, in Equation 1.41, the curly expression { } represents a chapeau function for linear spline interpolation (Unser, 1999), In other words, v ( z ) is sampled and linearly interpolated with L Speriod in Equation 1.41without any smearing, as it was for the case of conventional fiber ( Equation 1.27).

The results of modeling ( Equation 1.39) are presented in Figure 1.26, left panel. The spatially integrated version of this signal ( Equation 1.41) was modeled for L 0= 2 L S, and is shown in Figure 1.26, right panel. Low temporal frequencies out of the range of interest can be filtered out, and also spatial antialiasing filtering can be used. It is worth mentioning that the right panel of Figure 1.26is very similar to the original pulse ( Figure 1.5), which demonstrates the real change of polarity of the reflected seismic pulse. Compared with Figure 1.10(conventional fiber), Figure 1.26shows better SNR and signal amplitude stability than with conventional fiber, and a more uniform size of the step in the “staircase” in the left panel, which can be easily filtered out.

Figure 126 Acoustic measurements using DAS with precision engineered fiber - фото 73

Figure 1.26 Acoustic measurements using DAS with precision engineered fiber: The left panel represents strain rate measurement ( Equation 1.39) and the right panel displays ground speed measurement ( Equation 1.41) after filtering and integration. The signals’ cross‐section along the white line is shown in the bottom panels in radians. The modeled source is shown in the right panel of Figure 1.5.

The spatial spectral response in the wavenumber domain K zcan be represented by Fourier transform :

(1.42) where ℑ K z is the spatial spectral response of the seismic wave - фото 74

where ( K z) is the spatial spectral response of the seismic wave. Comparisons of DAS with engineered fiber spectral response for spatial sampling equal to the gauge length and half of gauge length are presented in Figure 1.27based on Equation 1.41. For the high spatial sampling, we have a gain in the frequency range, which is highlighted by the gray filling. Moreover, it is easy to filter out the aliased component for high sampling as the spectral density is zero for maximum frequency, seen by comparing the position of the black and gray vertical lines in Figure 1.27. This advantage can explain the absence of “staircasing” and the smooth output in Figure 1.26right panel. An additional advantage of high sampling is that, for a typical L 0= L G= 5 m , the sampling is twice or even three times smaller than the sensor separation in a geophone array. This spatial frequency margin is useful because DAS timing is different from analog geophones. For a geophone antenna, we can filter out high‐frequency space‐time components in the time domain by electrically filtering individual channels before sampling to prevent spatial aliasing. This approach is ineffective for DAS when the time sampling acts directly on the rapidly changing photocurrent. The problem can be solved for DAS by mechanical filtering in the acoustic area using a special design of the sensing cable, as in Carroll & Huber (1986). An alternative approach involves some oversampling in the spatial domain, and the result is not completely independent. Subsequent filtering then removes high spatial frequencies and prevents aliasing.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Distributed Acoustic Sensing in Geophysics»

Представляем Вашему вниманию похожие книги на «Distributed Acoustic Sensing in Geophysics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Distributed Acoustic Sensing in Geophysics»

Обсуждение, отзывы о книге «Distributed Acoustic Sensing in Geophysics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x