Handbook of Aggregation-Induced Emission, Volume 1

Здесь есть возможность читать онлайн «Handbook of Aggregation-Induced Emission, Volume 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Aggregation-Induced Emission, Volume 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Aggregation-Induced Emission, Volume 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The first volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission In this first volume of three, the editors survey the subject of aggregation-induced emission with a focus on the fundamentals of various branches of the discipline, such as crystallization-induced emission, room temperature phosphorescence, aggregation-induced delayed fluorescence, and more. This book covers the new properties of materials endowed by molecular aggregates. It also includes: 
A thorough introduction to the mechanistic understanding of the importance of molecular motion to aggregation-induced emission An exploration of the aggregation-induced emission mechanism at the molecular level Practical discussions of aggregation-induced emission from the restriction of double bond rotation at the excited state, and clusterization-triggered emission Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Handbook of Aggregation-Induced Emission, Volume 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Aggregation-Induced Emission, Volume 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 1 (a) Kassem S, Leeuwen T, Lubbe AS, et al. Artificial molecular motors. Chem Soc Rev 2017; 46: 2592–2621; (b) Leeuwen T, Lubbe AS, Štacko P, et al. Dynamic control of function by light‐driven molecular motors. Nat Rev Chem 2017; 1: 0096; (c) Erbas‐Cakmak S, Leigh DA, McTernan CT, et al. Artificial molecular machines. Chem Rev 2015; 115: 10081−10206.

2 2 Turro NJ, Scaiano JC and Ramamurthy V. Modern molecular photochemistry of organic molecules. University Science Books, 2010.

3 3 (a) Shuai Z and Peng Q. Organic light‐emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology. Natl Sci Rev 2017; 4: 224−239; (b) Shuai Z and Peng Q. Excited states structure and processes: understanding organic light‐emitting diodes at the molecular level. Phys Rep 2014; 537: 123−156.

4 4 Forster T and Kasper K. Ein Konzentrationsumschlag der Fluoreszenz. Zeitschrift für Physikalische Chemie 1954; 1: 275−277.

5 5 Luo J, Xie Z, Lam JWY, et al. Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chem Commun 2001; 18: 1740−1741.

6 6 (a) Mei J, Leung NLC, Kwok RTK, et al. Aggregation‐induced emission: together we shine, united we soar! Chem Rev 2015; 115: 11718−11940; (b) Mei J, Hong Y, Lam JWY, et al. Aggregation‐induced emission: the whole is more brilliant than the parts. Adv Mater 2014; 26: 5429−5479; (c) He Z, Ke C and Tang BZ. Journey of aggregation‐induced emission research. ACS Omega 2018; 3: 3267−3277; (d) Chen Y, Lam JWY, Kwok RTK, et al. Aggregation‐induced emission: fundamental understanding and future developments. Mater Horiz 2019; 6: 428−433; (e) Zhao Z, Zhang H, Lam JWY, et al. Aggregation‐induced emission: new vistas at the aggregate level. Angewandte Chemie Int Edn 2020; 59: 2−22.

7 7 (a) Zhang T, Jiang Y, Niu Y, et al. Aggregation effects on the optical emission of 1,1,2,3,4,5‐Hexaphenylsilole (HPS): a QM/MM study. J Phys Chem A 2014; 118: 9094−9104; (b) Zhang T, Peng Q, Quan C, et al. Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chem Sci 2016; 7: 5573−5580; (c) Zhang T, Ma H, Niu Y, et al. Spectroscopic signature of the aggregation‐induced emission phenomena caused by restricted nonradiative decay: a theoretical proposal. J Phys Chem C 2015; 119: 5040−5047; (d) Wu Q, Deng C, Peng Q, et al. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for Pyrazine derivatives. J Comput Chem 2012; 33: 1862−1869; (e) Peng Q, Yi Y, Shuai Z, et al. Toward quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. J Am Chem Soc 2007; 129: 9333−9339; (f) Niu Y, Li W, Peng Q, et al. Molecular materials property prediction package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Mol Phys 2018; 116: 1078−1090; (g) Niu Y, Peng Q, Shuai Z, et al. Promoting‐mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. Sci China Ser B Chem 2008; 51: 1153−1158.

8 8 (a) Gao Y, Chang X, Liu X, et al. Excited‐state decay paths in tetraphenylethene derivatives. J Phys Chem A 2017; 121: 2572–2579; (b) Prlj A, Došlić N, Corminboeuf C, et al. How does tetraphenylethylene relax from its excited states? Phys Chem Chem Phys 2016; 18: 11606–11609.

9 9 Tu Y, Liu J, Zhang H, et al. Restriction of access to the dark state: a new mechanistic model for heteroatom‐containing AIE systems. Angewandte Chemie Int Edn 2019; 58: 14911–14914.

10 10 (a) Bu F, Duan R, Xie Y, et al. Unusual aggregation‐induced emission of a coumarin derivative as a result of the restriction of an intramolecular twisting motion. Angewandte Chemie Int Edn 2015; 54: 14492–14497; (b) Zhao Z, Zhen X, Du L, et al. Non‐aromatic annulene‐based aggregation‐induced emission system via aromaticity reversal process. Nat Commun 2019; 10: 2952.

11 11 (a) Qian H, Cousins ME, Horak EH, et al. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation‐induced emission. Nat Chem 2017; 9: 83–87; (b) Zhou P, Li P, Zhao Y, et al. Restriction of flip‐flop motion as a mechanism for aggregation‐induced emission. J Phys Chem Lett 2019; 10: 6929−6935; (c) Guo J, Fan J, Lin L, et al. Mechanical insights into aggregation‐induced delayed fluorescence materials with anti‐Kasha behavior. Adv Sci 2019; 6: 1801629; (d) He Z, Zhao W, Lam JWY, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun 2017; 8: 416.

12 12 Herzberg G and Teller E. Schwingungsstruktur der Elektronenübergänge bei mehratomigen Molekülen. Zeitschrift für Physikalische Chemie 1933; 21: 410.

13 13 (a) Zhang H, Zheng X, Xie N, et al. Why do simple molecules with “isolated” phenyl rings emit visible light? J Am Chem Soc 2017; 139: 16264–16272; (b) Zhang H, Du L, Wang L, et al. Visualization and manipulation of molecular motion in the solid state through photoinduced clusteroluminescence. J Phys Chem Lett 2019; 10: 7077−7085; (c) Sturala J, Etherington MK, Bismillah AN, et al. Excited‐state aromatic interactions in the aggregation‐induced emission of molecular rotors. J Am Chem Soc 2017; 139: 17882–17889.

14 14 (a) Chen J, Lam CCW, Lam JWY, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chem Mater 2003; 15: 1535–1546; (b) Fan X, Sun J, Wang F, et al. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem Commun 2008; 26: 2989−2991; (c) Li Z, Dong Y, Mi B, et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. J Phys Chem B 2005; 109: 10061–10066; (d) Zhao E, Lam JWY, Hong Y, et al. How do substituents affect silole emission? J Mater Chem C 2013; 1: 5661−5668; (e) Liang GD, Lam JWY, Qin W, et al. Molecular luminogens based on restriction of intramolecular motions through host–guest inclusion for cell imaging. Chem Commun 2014; 50: 1725−1727; (f) Qin A, Lam JWY, Mahtab F, et al. Pyrazine luminogens with “free” and “locked” phenyl rings: understanding of restriction of intramolecular rotation as a cause for aggregation‐induced emission. Appl Phys Lett 2009; 94: 253308.

15 15 Leung NLC, Xie N, Yuan W, et al. Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chem A Eur J 2014; 20: 15349–15353.

16 16 Cai Y, Du L, Samedov K, et al. Deciphering the working mechanism of aggregation‐induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy Chem Sci 2018; 9: 4662.

17 17 (a) Liu J, Pan L, Peng Q, et al. Tetraphenylpyrimidine‐based AIEgens: facile preparation, theoretical investigation and practical application. Molecules 2017; 22: 1679; (b) Zhang H, Liu J, Du L, et al. Drawing a clear mechanistic picture for the aggregation‐induced emission process. Mater Chem Front 2019; 3: 1143–1150; (c) Chen M, Hu X, Liu J, et al. Rational design of red AIEgens with a new core structure from non‐emissive heteroaromatics. Chem Sci 2018; 9: 7829–7834; (d) Chen M, Zhang X, Liu J, et al. Evoking photothermy by capturing intramolecular bond stretching vibration‐induced dark‐state energy. ACS Nano 2020; 14: 4265–4275.

18 18 (a) Crespo‐Otero R, Li Q and Blancafort L. Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chem Asian J 2019; 14: 700–714; (b) Peng X, Ruiz‐Barragan S, Li Z, et al. Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. J Mater Chem C 2016; 4: 2802–2810; (c) Li Q and Blancafort L. A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem Commun 2013; 49: 5966–5968; (d) Sasaki S, Suzuki S, Sameera WMC, et al. Highly twisted N,N‐dialkylamines as a design strategy to tune simple aromatic hydrocarbons as steric environment‐sensitive fluorophores. J Am Chem Soc 2016; 138: 8194–8206.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Aggregation-Induced Emission, Volume 1»

Представляем Вашему вниманию похожие книги на «Handbook of Aggregation-Induced Emission, Volume 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 1»

Обсуждение, отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x