Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(5.11) Nonspectral approaches define convolutions directly on the graph operating on - фото 582

Non‐spectral approaches define convolutions directly on the graph, operating on spatially close neighbors. The major challenge with non‐spectral approaches is defining the convolution operation with differently sized neighborhoods and maintaining the local invariance of CNNs.

Neural fingerprints ( FP ) [15] use different weight matrices for nodes with different degrees,

(5.12) where is the weight matrix for nodes with degree at layer t - фото 583

where картинка 584is the weight matrix for nodes with degree картинка 585at layer t . The main drawback of the method is that it cannot be applied to large‐scale graphs with more node degrees.

Diffusion‐convolutional neural networks ( DCNNs ) were proposed in [16].Transition matrices are used to define the neighborhood for nodes in DCNN. For node classification, it has the form

(5.13) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 586

where X is an N × F tensor of input features ( N is the number of nodes, and F is the number of features). P *is an N × K × N tensor that contains the power series {P, P 2, …, P K} of matrix P, and P is the degree‐normalized transition matrix from the graph adjacency matrix A. Each entity is transformed to a diffusion convolutional representation that is a K × F matrix defined by K hops of graph diffusion over F features. It will then be defined by a K × F weight matrix and a nonlinear activation function f . Finally, H (which is N × K × F ) denotes the diffusion representations of each node in the graph. As for graph classification, DCNN simply takes the average of nodes’ representation,

(5.14) and 1 Nhere is an N 1 vector of ones DCNN can also be applied to edge - фото 587

and 1 Nhere is an N × 1 vector of ones. DCNN can also be applied to edge classification tasks, which requires converting edges to nodes and augmenting the adjacency matrix.

Dual graph convolutional network ( DGCN) [17]: This jointly considers the local consistency and global consistency on graphs. It uses two convolutional networks to capture the local/global consistency and adopts an unsupervised loss function to ensemble them. As the first step, let us note that stacking the operator in Eq. (5.11)could lead to numerical instabilities and exploding/vanishing gradients, so [14] introduces the renormalization trick : Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 588, with Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 589and Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 590. Finally, [14] generalizes the definition to a signal X ∈ N × Cwith C input channels and F filters for feature maps as follows:

(5.15) Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 591

where Θ C × Fis a matrix of filter parameters, and Z ∈ N × Fis the convolved signal matrix. The first convolutional network for DGCN is the same as Eq. (5.15). The second network replaces the adjacency matrix with a positive pointwise mutual information (PPMI) matrix:

(5.16) where X Pis the PPMI matrix and D Pis the diagonal degree matrix of X P When - фото 592

where X Pis the PPMI matrix, and D Pis the diagonal degree matrix of X P.

When dealing with large‐scale networks, low‐dimensional vector embeddings of nodes in large graphs have proved extremely useful as feature inputs for a wide variety of prediction and graph analysis tasks [18–22]. The basic idea behind node‐embedding approaches is to use dimensionality reduction techniques to distill the high‐dimensional information about a node’s graph neighborhood into a dense vector embedding. These node embeddings can then be fed to downstream machine learning systems and aid in tasks such as node classification, clustering, and link prediction [19–21].

GraphSAGE (SAmple and aggreGatE) [23] is a general inductive framework. The framework generates embeddings by sampling and aggregating features from a node’s local neighborhood.

(5.17) However the original work utilizes in Eq 517only a fixedsize set of - фото 593

However, the original work utilizes in Eq. (5.17)only a fixed‐size set of neighbors by uniformly sampling. Three aggregator functions are used.

The mean aggregator could be viewed as an approximation of the convolutional operation from the transductive GCN framework [14], so that the inductive version of the GCN variant could be derived by

(5.18) The mean aggregator is different from other aggregators because it does not - фото 594

The mean aggregator is different from other aggregators because it does not perform the concatenation operation that concatenates картинка 595and картинка 596in Eq. (5.17). It could be viewed as a form of “skip connection” [24] and could achieve better performance.

The long short‐term memory ( LSTM ) aggregator , which has a larger expressive capability, is also used. However, LSTMs process inputs in a sequential manner so that they are not permutation invariant. Reference [23] adapts LSTMs to operate on an unordered set by permutating the node’s neighbors.

Pooling aggregator: In the pooling aggregator, each neighbor’s hidden state is fed through a fully connected layer, after which a max ‐pooling operation is applied to the set of the node’s neighbors:

(5.19) Note that any symmetric function could be used in place of the max pooling - фото 597

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x