Magnetic Resonance Microscopy

Здесь есть возможность читать онлайн «Magnetic Resonance Microscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Magnetic Resonance Microscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Magnetic Resonance Microscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Magnetic Resonance Microscopy
Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research,
Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research
Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research

Magnetic Resonance Microscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Magnetic Resonance Microscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

33 33Jouda, M., Kamberger, R., Leupold, J.et al. (2017). A comparison of Lenz lenses and LC resonators for NMR signal enhancement. Concepts in Magnetic Resonance. Part B, Magnetic Resonance Engineering 47B (3): e21357. doi: 10.1002/cmr.b.21357.

34 34Nils Spengler, P.T., While, M.V., Meissner, U.W.et al. (2017). Magnetic Lenz lenses improve the limit-of-detection in nuclear magnetic resonance. PLoS ONE 12 (8): e0182779. doi: 10.1371/journal.pone.0182779.

35 35Kamberger, R., Göbel-Guéniot, K., Gerlach, J.et al. (2018). Improved method for MR microscopy of brain tissue cultured with the interface method combined with Lenz lenses. Magnetic Resonance Imaging 52: 24–32. doi: 10.1016/j.mri.2018.05.010.

36 36Lichtman, J., Pfister, H., and Reid, C. (2020). Connections in the brain https://www.rc.fas.harvard.edu/case-studies/connections-in-the-brain(accessed 25 October 2020).

37 37Fuhrer, E., Bäcker, A., Kraft, S.et al. (2018). 3D carbon scaffolds for neural stem cell culture and magnetic resonance imaging. Advanced Healthcare Materials 7 (4): 1700915. doi: 10.1002/adhm.201700915.

38 38Nimbalkar, S., Fuhrer, E., and Silva, P. (2019). Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging. Microsystems & Nanoengineering 5: 61. doi: 10.1038/s41378-019-0106-x.

39 39Jouda, M., Klein, C.O., Korvink, J.G.et al. (2019). Gradient-induced mechanical vibration of neural interfaces during MRI. IEEE Transactions on Bio-medical Engineering 67: 915–923. doi: 10.1109/TBME.2019.2923693.

40 40Bouilleret, V., Ridoux, V., Depaulis, A.et al. (1999). Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: Electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89 (3): 717–729. doi: https://doi.org/10.1016/S0306-4522(98)00401-1.

41 41Göbel-Guéniot, K., Gerlach, J., Kamberger, R.et al. (2020). Histological correlates of diffusion-weighted magnetic resonance microscopy in a mouse model of mesial temporal lobe epilepsy. Frontiers in Neuroscience 14: 543.

42 42Janz, P., Schwaderlapp, N., Heining, K.et al. (2017). Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy. ELIFE 6: e25742. doi: 10.7554/eLife.25742.

43 43Olson, D.L., Peck, T.L., Webb, A.G.et al. (1995). High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270 (5244): 1967–1970.

44 44Massin, C., Boero, G., Vincent, F.et al. (2002). High-Q factor RF planar microcoils for micro-scale NMR spectroscopy. Sensors and Actuators A: Physical 97: 280–288. doi: 10.1016/s0924-4247(01)00847-0.

45 45Montinaro, E., Grisi, M., Letizia, M.C.et al. (2018). 3D printed microchannels for subnL NMR spectroscopy. 13 (5): e0192780. doi: 10.1371/journal.pone.0192780.

46 46Finch, G., Yilmaz, A., and Utz, M. (2016). An optimised detector for in-situ high-resolution NMR in microfluidic devices. Journal of Magnetic Resonance 262: 73–80. doi: 10.1016/j.jmr.2015.11011.

47 47Yilmaz, A.and Utz, M. (2016). Characterisation of oxygen permeation into a microfluidic device for cell culture by in situ NMR spectroscopy. Lab on a Chip 16 (11): 2079. doi: 10.1039/c6lc00396f.

48 48Flint, J.J., Menon, K., Hansen, B.et al. (2015). A microperfusion and in-bore oxygenator system designed for magnetic resonance microscopy studies on living tissue explants. Scientific Reports 5 (1): 18095. doi: 10.1038/srep18095.

49 49Kalfe, A., Telfah, A., Lambert, J.et al. (2015). Looking into living cell systems: Planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Analytical Chemistry 87 (14): 7402–7410. doi: 10.1021/acs.analchem.5b01603.

50 50Davoodi, H., Nordin, N., Bordonali, L.et al. (2020). An NMR-compatible microfluidic platform enabling in situ electrochemistry. Lab on a Chip 20 (17): 3202–3212. doi: 10.1039/d0lc00364f.

51 51Bordonali, L., Nordin, N., Fuhrer, E.et al. (2019). Parahydrogen based NMR hyperpolarisation goes micro: An alveolus for small molecule chemosensing. Lab on a Chip 19: 503–512. doi: 10.1039/C8LC01259H.

52 52Eills, J., Hale, W., Sharma, M.et al. (2019). High-resolution nuclear magnetic resonance spectroscopy with picomole sensitivity by hyperpolarization on a chip. Journal of the American Chemical Society 141 (25): 9955–9963. doi: 10.1021/jacs.9b03507.

53 53Lehmkuhl, S., Wiese, M., Schubert, L.et al. (2018). Continuous hyper-polarization with parahydrogen in a membrane reactor. Journal of Magnetic Resonance 291: 8–13. doi: 10.1016/j.jmr.2018.03.012.

54 54Hiramoto, K., Ino, K., Nashimoto, Y.et al. (2019). Electric and electrochemical microfluidic devices for cell analysis. Frontiers in Chemistry 7 (396): 396. doi: 10.3389/fchem.2019.00396.

55 55Jayawickrama, D.A.and Sweedler, J.V. (2004). Dual microcoil NMR probe coupled to cyclic CE for continuous separation and analyte isolation. Analytical Chemistry 76 (16): 4894–4900. doi: 10.1021/ac049390o.

56 56 Grass, K., Böhme, U., Scheler, U.et al. (2008). Importance of hydrodynamic shielding for the dynamic behavior of short polyelectrolyte chains. Physical Review Letters 100 (9): 096104. doi: 10.1103/physrevlett.100.096104.

57 57Diekmann, J., Adams, K.L., Klunder, G.L.et al. (2011). Portable microcoil NMR detection coupled to capillary electrophoresis. Analytical Chemistry 83 (4): 1328–1335. doi: 10.1021/ac102389b.

58 58Gomes, B., Pollyana, D.S., Lobo, C.et al. (2017). Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy. Analytica Chimica Acta 983: 91–95. doi: 10.1016/j.aca.2017.06.008.

59 59 Sorte, E.G., Jilani, S., and Tong, Y.J. (2017). Methanol and ethanol electrooxidation on PtRu and PtNiCu as studied by high-resolution in situ electrochemical NMR spectroscopy with interdigitated electrodes. Electrocatalysis 8: 95–102. doi: 10.1007/s12678-016-0344-8.

60 60 Zu-Rong, N., Cui, X.-H., Cao, S.-H.et al.(2017). A novel in situ electrochemical NMR cell with a palisade gold film electrode. AIP Advances 7 (8): 085205. doi: 10.1063/1.4997887.

61 61Da Silva, P., Gomes, B., Lobo, C.et al. (2019). Electrochemical NMR spectroscopy: Electrode construction and magnetic sample stirring. Microchemical Journal 146: 658–663. doi: 10.1016/j.microc.2019.01.010.

62 62Swyer, I., Soong, R., Dryden, M.D.M.et al. (2016). Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy. Lab on a Chip 16 (22): 4424–4435. doi: 10.1039/C6LC01073C.

63 63Swyer, I., Von Der Ecken, S., Wu, B.et al. (2019). Digital microfluidics and nuclear magnetic resonance spectroscopy for in situ diffusion measurements and reaction monitoring. Lab on a Chip 19: 641–653. doi: 10.1039/c8lc01214h.

64 64Hilty, C., McDonnell, E.E., Granwehr, J.et al. (2005). Microfluidic gas-flow profiling using remote-detection NMR. Proceedings of the National Academy of Sciences of the United States of America 102 (42): 14960–14963. doi: 10.1073/pnas.0507566102.

65 65Zhivonitko, V.V., Telkki, V.-V., Leppäniemi, J.et al. (2013). Remote detection NMR imaging of gas phase hydrogenation in microfluidic chips. Lab on a Chip 13 (8): 1554–1561. doi: 10.1039/c3lc41309h.

66 66Jiménez-Martínez, R., Kennedy, D.J., Rosenbluh, M.et al. (2014). Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nature Communications 5 (1): 3908. doi: 10.1038/ncomms4908.

67 67Kennedy, D.J., Seltzer, S.J., Jiménez-Martínez, R.et al. (2017). An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe. Scientific Reports 7 (1): 43994. doi: 10.1038/srep43994.

68 68Kurhanewicz, J., Vigneron, D.B., Ardenkjaer-Larsen, J.et al. (2019). Hyperpolarized 13C MRI: Path to clinical translation in oncology. Neoplasia 21 (1): 1–16. doi: 10.1016/j.neo.2018.09.006.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Magnetic Resonance Microscopy»

Представляем Вашему вниманию похожие книги на «Magnetic Resonance Microscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Nick Stephenson
Jill Shalvis - Animal Magnetism
Jill Shalvis
Рита Браун - Animal Magnetism
Рита Браун
Diatom Microscopy
Неизвестный Автор
Scott D. Sudhoff - Power Magnetic Devices
Scott D. Sudhoff
Magnetic Nanoparticles in Human Health and Medicine
Неизвестный Автор
Отзывы о книге «Magnetic Resonance Microscopy»

Обсуждение, отзывы о книге «Magnetic Resonance Microscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x