Introduction to Differential Geometry with Tensor Applications

Здесь есть возможность читать онлайн «Introduction to Differential Geometry with Tensor Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Differential Geometry with Tensor Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Differential Geometry with Tensor Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

INTRODUCTION TO DIFFERENTIAL GEOMETRY WITH TENSOR APPLICATIONS
This is the only volume of its kind to explain, in precise and easy-to-understand language, the fundamentals of tensors and their applications in differential geometry and analytical mechanics with examples for practical applications and questions for use in a course setting.
This outstanding new volume: Introduction to Differential Geometry with Tensor Applications
Introduction to Differential Geometry with Tensor Applications

Introduction to Differential Geometry with Tensor Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Differential Geometry with Tensor Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2 Systems of Different Orders

Let us consider the two quantities, a 1, a 1 or a 1, a 2, which are represented by ai or ai , respectively, for i = 1, 2. In such cases, the expressions ai , ai , ai j , ai j , and картинка 21are called systems . In each value of ai and ai are called systems of first order and each value of ai j , ai j , and картинка 22is called a double system or system of second order , of which a 12, a 22 a 23, a 13, and картинка 23are called their respective components . Similarly, we have systems of the third order that depend on three indices shown as ai jk , aikl , ai jm , ai jn , and картинка 24and each number of their respective components are 8.

In a system of order zero, it is shown that the quantity has no index, such as a . The upper and lower indices of a system are called its indices of contravariance and covariance , respectively. For a system of картинка 25, i and j are indices of a contravariant and k is of covariance . Accordingly, the system Aij is called a contravariant system, Aklm is called a covariant system, and is картинка 26called a mixed system .

1.3 Summation Convention Certain Index

If in some expressions a certain index occurs twice, this means that this expression is summed with respect to that index for all admissible values of the index.

Thus, the linear form Introduction to Differential Geometry with Tensor Applications - изображение 27has an index, i, occurring in it twice. We will omit the summation symbol Σ and write aixi to mean a 1 x 1+ a 2 x 2+ a 3 x 3+ a 4 x 4. In order to avoid Σ, we shall make use of a convention used by A. Einstein which is accordingly called the Einstein Summation Convention or Summation Convention .

Of course, the range of admissible values of the index, 1 to 4 in this case, must be specified. If the symbol i has a range of values from 1 to 3 and j ranges from 1 to 4, the expression

(1.1)

represents three linear forms:

(1.2) Here index i is the identifying free index and since index j occurs twice - фото 28

Here, index i is the identifying (free) index and since index j , occurs twice, it is the summation index.

We shall adopt this convention throughout the chapters and take the sum whenever a letter appears in a term once in a subscript and once in superscript or if the same two indices are in subscript or are in superscript.

Example 1.3.1.Express the sum Introduction to Differential Geometry with Tensor Applications - изображение 29.

Solution: 131 Dummy Index The summation or dummy index can be changed at will Thus - фото 30

1.3.1 Dummy Index

The summation (or dummy) index can be changed at will. Thus, Equation (1.1)can be written in the form a ikx kif k has the same range of values as j.

We will assume that the summation and identifying indices have ranges of value from 1 to n.

Thus, aixi will represent a linear form

Introduction to Differential Geometry with Tensor Applications - изображение 31

For example, Introduction to Differential Geometry with Tensor Applications - изображение 32can be written as aikxixk and here, i and k both are dummy indexes.

So, any dummy index can be replaced by any other index with a range of the same numbers.

1.3.2 Free Index

If in an expression an index is not a dummy, i.e., it is not repeated twice, then it is called a free index . For example, for ai jxj , the index j is dummy, but index i is free.

1.4 Kronecker Symbols

A particular system of second order denoted by Introduction to Differential Geometry with Tensor Applications - изображение 33, is defined as

(1.3) Introduction to Differential Geometry with Tensor Applications - изображение 34

Such a system is called a Kronecker symbol or Kronecker delta .

For example, by summation convention is expressed as We shall now consider some - фото 35, by summation convention is expressed as

We shall now consider some properties of this system Property 141If x 1 x - фото 36

We shall now consider some properties of this system.

Property 1.4.1.If x 1, x 2, … xn are independent variables, then

(1.4) Property 142From the summation convention we get Similarly δ ii δ ii n - фото 37

Property 1.4.2.From the summation convention, we get

Similarly δ ii δ ii n Property 143From the definition of δ i j taken - фото 38

Similarly, δ ii= δ ii= n

Property 1.4.3.From the definition of δ i j, taken as an element of unit matrix I, we have

Property 144 15 16 - фото 39

Property 1.4.4.

(1.5) Introduction to Differential Geometry with Tensor Applications - изображение 40

(1.6) Introduction to Differential Geometry with Tensor Applications - изображение 41

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Differential Geometry with Tensor Applications»

Представляем Вашему вниманию похожие книги на «Introduction to Differential Geometry with Tensor Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Differential Geometry with Tensor Applications»

Обсуждение, отзывы о книге «Introduction to Differential Geometry with Tensor Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x