Yang Xia - Essential Concepts in MRI

Здесь есть возможность читать онлайн «Yang Xia - Essential Concepts in MRI» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Essential Concepts in MRI: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Essential Concepts in MRI»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ESSENTIAL CONCEPTS IN MRI
A concise and complete introductory treatment of NMR and MRI Essential Concepts in MRI
Essential Concepts in MRI

Essential Concepts in MRI — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Essential Concepts in MRI», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A nucleus in a liquid experiences a fluctuating field, due to the magnetic moments of nuclei in other molecules as they undergo thermal motions. (This experience of a fluctuating field is actually true for all environments, not just a nucleus in a liquid.) This fluctuating field may be resolved by Fourier analysis into a series of terms that are oscillating at different frequencies, which may be further divided into components parallel to B 0and perpendicular to B 0. The component parallel to B 0could influence the steadiness of the static field B 0, while the components perpendicular to the static field at the Larmor frequency could induce transitions between the levels in a similar way to B 1. These influences give rise to a non-adiabatic (or non-secular) contribution to relaxation of both the longitudinal and transverse components of M.

If the fluctuating field manages to alter the populations of the states, the populations would evolve immediately until they reach the values predicted by the Boltzmann equations for the temperature of the Brownian motion (lattice temperature). This process is described by T 1and results in the relaxation of the longitudinal component of M. The contribution of the fluctuating field to T 2can be seen from the following argument. According to Eq. ( 3.9)–Eq. (3.11), the Zeeman energy levels are known precisely (Figure 3.1), which implies the resonance frequency associated with the transition between two neighboring Zeeman levels should have a unique value, that is, a delta function at a singular ω 0(Figure 3.2a). In reality, however, the resonant peak even in simple liquids is broadened due to the fluctuation of the Zeeman levels (Figure 3.2b), caused by the distributions of local interactions in their environment experienced by the nuclear spins. The line width of the resonant peak (excluding the effect of inhomogeneity in B 0), which is inversely proportional to T 2, is a measure of the uncertainty in the energies between two neighboring Zeeman levels. This uncertainty can also be traced back to the fluctuating fields due to the magnetic moments of nuclei in other molecules as they undergo thermal motions.

Figure 32 a A precise value of the Zeeman energy difference between the two - фото 103

Figure 3.2 (a) A precise value of the Zeeman energy difference between the two states in a spin-½ system should imply a single value in the transition, hence a delta function in the frequency distribution. (b) In reality, a wider line shape such as a Lorentzian or Gaussian suggests an uncertainty in the difference between the energy levels. For simple liquids, the line shape is a Lorentzian in the frequency domain, which corresponds to the exponential decay in the time-domain FID, shown in (c). A fast decay of the FID (e.g., short blue dash) implies a short T 2and a wide line shape; a slow decay (e.g., red solid line) implies a long T 2and a narrow line shape. A precise value of the energy difference as in (a) would imply a sinusoidal oscillation without any decay in the time domain (as shown in Figure 2.15d).

The Bloch equation [Eq. (2.18)] contains a phenomenological term leading to exponential relaxation. This classical description is quite accurate for spins in rapidly tumbling molecules but breaks down when the motions of molecules become slow or complex, such as in the case of internal motion in macromolecules. In the following sections, we first explain the relaxation mechanisms in terms of quantum transitions between eigenstates of operators Ix, Iy , and Iz ; then, we briefly describe the results of the random field model of relaxation.

3.7.1 Relaxation Mechanism in Terms of Quantum Transitions

For spin-1/2 particles, the relaxation mechanism can be understood with a set of equations and analysis in terms of quantum transition [9, 10]. In this approach, the spin populations (the occupancies of the eigenstates of Iz with eigenvalues m=±1/2) are defined as

Essential Concepts in MRI - изображение 104(3.25a)

Essential Concepts in MRI - изображение 105(3.25b)

We also define the total population N 0and the population difference n as

Essential Concepts in MRI - изображение 106(3.26a)

Essential Concepts in MRI - изображение 107(3.26b)

Hence, the macroscopic magnetization M is proportional to the population difference n . Using Eq. ( 3.21), the z component of the magnetization at time = 0 can be written as

Essential Concepts in MRI - изображение 108(3.27)

Since the population is at equilibrium with the environment according to the Boltzmann distribution, the population ratio is

Essential Concepts in MRI - изображение 109(3.28)

To consider the dynamics of the two populations, we define w+- as the probability of transition of a spin from |+> state to |–> state per spin per second, and w-+ as the probability of transition of a spin from |–> state to |+> state per spin per second. At equilibrium, we have

Essential Concepts in MRI - изображение 110(3.29)

Combining Eq. ( 3.28) and Eq. ( 3.29), we have

Essential Concepts in MRI - изображение 111(3.30)

With this equation, the changes of the spins with time can be defined as

Essential Concepts in MRI - изображение 112(3.31a)

331b Each equation in Eq 331 has two terms the increment term the - фото 113(3.31b)

Each equation in Eq. (3.31) has two terms, the increment term (the first term) and the reduction term (the second term). Given the fact that w +-≈ w -+, we define

Essential Concepts in MRI - изображение 114(3.32a)

Essential Concepts in MRI - изображение 115(3.32b)

Note that w 0can be considered as the probability of induced transitions, while the term ℏγB0/kBT can be considered as the probability of spontaneous transitions; their differences were distinguished first by Albert Einstein in 1916 when he published a paper on different processes occurring in the formation of an atomic spectral line in optical studies. And hence we can show that

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Essential Concepts in MRI»

Представляем Вашему вниманию похожие книги на «Essential Concepts in MRI» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Essential Concepts in MRI»

Обсуждение, отзывы о книге «Essential Concepts in MRI» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x