Philip Hofmann - Solid State Physics

Здесь есть возможность читать онлайн «Philip Hofmann - Solid State Physics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Solid State Physics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Solid State Physics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Enables readers to easily understand the basics of solid state physics
Solid State Physics
Solid State Physics
Solid State Physics

Solid State Physics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Solid State Physics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In more complex solids, several bonding types can coexist. For instance, the diamond structure of Figure 1.7is also found for materials that mix group III and group V elements, such as GaAs, or group II and group VI elements, such as InP. In these, the different atoms occupy alternating sites but still adopt the картинка 337bonding arrangement. This is accompanied by an electron transfer from the higher‐group atom to the lower‐group atom, resulting in a bonding situation with both covalent and ionic contributions.

We now return to the Schrödinger equation for the full Hamiltonian from Eq. (2.3). This has to be solved by a wave function containing the coordinates картинка 338and картинка 339of two electrons (we still keep the positions of the nuclei fixed). This makes the problem much harder and we can only begin to imagine the difficulty of finding a wave function describing all the electrons in a solid! Fortunately, even in a solid, most cases can be described quite well by considering one electron moving in the potential of the ions and some averaged potential arising from the other electrons. In this book, there are only two cases where this simple description will fail: magnetism and superconductivity. The following discussion will mainly be useful for the treatment of magnetism in Chapter 8. Understanding these details is not crucial at this point, and you could decide to jump to Section 2.4and return here later.

Solving the Schrödinger equation for the Hamiltonian from Eq. (2.3) would be greatly simplified if we could somehow “switch off” the electrostatic interaction between the two electrons, because then the Hamiltonian could be written as the sum of two parts, one for each electron. Indeed, the Hamiltonian in Eq. (2.3) could essentially be the sum of two Hamiltonians similar to the one in Eq. (2.4), one for each electron (but with the картинка 340term appearing only once). If a Hamiltonian containing two electronic coordinates could be separated into a sum of two Hamiltonians that contain only one electronic coordinate each, the corresponding Schrödinger equation could be solved by a product of the two wave functions that are solutions to the two individual Hamiltonians. We could therefore start an attempt to solve Eq. (2.3) based on what we have already learned for the картинка 341ion. However, we will start from an even simpler point of view: Without any interaction between the electrons, and for a large distance картинка 342, the electron near nucleus A will not feel the potential of nucleus B and vice versa. In this case, Eq. (2.3) would simply turn into the sum of the Hamiltonians for two hydrogen atoms and we could approximate the two‐electron wave function by with and being the wave functions for atomic hydrogen However this - фото 343, with картинка 344and картинка 345being the wave functions for atomic hydrogen.

However, this simple approach is physically incorrect because such a wave function does not obey the Pauli principle. Since the electrons are fermions, the total wave function must be antisymmetric with respect to particle exchange, and the simple product wave function does not meet this requirement. The total wave function consists of a spatial part and a spin part, and thus there are two possibilities for forming an antisymmetric wave function – we can either combine a symmetric spatial part with an antisymmetric spin part or vice versa. The spatial part of the wave function can be constructed in two ways,

(2.9) 210 The plus sign in Eq 29 returns a symmetric spatial wave function - фото 346

(2.10) The plus sign in Eq 29 returns a symmetric spatial wave function which we - фото 347

The plus sign in Eq. (2.9) returns a symmetric spatial wave function, which we can combine with an antisymmetric spin wave function with the total spin equal to zero (the so‐called singlet state); the minus in Eq. (2.10) results in an antisymmetric spatial wave function to be combined with a symmetric spin wave function with the total spin equal to 1 (the so‐called triplet state).

The antisymmetric wave function in Eq. (2.10)vanishes for картинка 348– that is, the two electrons cannot be at the same location simultaneously. This leads to a depletion of the electron density between the nuclei and hence to an antibonding state. For the symmetric case, on the other hand, the electrons have opposite spins and can be at the same place, which leads to a charge accumulation between the nuclei and hence to a bonding state (see Figure 2.4).

Figure 24 The energy changes and for the formation of a - фото 349

Figure 2.4 The energy changes картинка 350and картинка 351for the formation of a hydrogen molecule. The dashed lines represent the approximation for long distances. The two insets show grayscale images of the corresponding electron probability density.

An approximate way to calculate the eigenvalues of Eq. (2.3) was suggested by W. Heitler and F. London in 1927. Their approach was to use the known single‐particle 1s wave functions for atomic hydrogen for картинка 352and картинка 353to form a two‐electron wave function картинка 354, in the form of either Eq. (2.9) or Eq. (2.10). These wave functions might not be entirely correct because the atomic wave functions will certainly be modified by the presence of the other atom. However, even if they are only approximately correct, we can obtain the molecular energy levels as

(2.11) According to the variational principle in quantum mechanics the resulting - фото 355

According to the variational principle in quantum mechanics, the resulting energy will always be higher than the correct ground‐state energy, but it will approach it for a good choice of the trial wave functions.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Solid State Physics»

Представляем Вашему вниманию похожие книги на «Solid State Physics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Solid State Physics»

Обсуждение, отзывы о книге «Solid State Physics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x