Philip Hofmann - Solid State Physics

Здесь есть возможность читать онлайн «Philip Hofmann - Solid State Physics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Solid State Physics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Solid State Physics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Enables readers to easily understand the basics of solid state physics
Solid State Physics
Solid State Physics
Solid State Physics

Solid State Physics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Solid State Physics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 22 a Formation of bonding and antibonding energy levels in the ion - фото 304

Figure 2.2 (a) Formation of bonding and antibonding energy levels in the картинка 305ion. The electronic energy level of an isolated H atom splits into the levels картинка 306according to Eq. (2.8). The radial wave function of an isolated H atom is shown at the left, and the bonding and antibonding wave functions along the molecular axis of the картинка 307ion are shown at the right (for proper normalization see Problem 3). (b) Bonding and antibonding energy levels картинка 308as a function of internuclear distance картинка 309. Zero energy corresponds to the ground state energy of a free hydrogen atom.

Figure 2.2b shows how the energy levels картинка 310vary as a function of the distance картинка 311between the nuclei. The antibonding energy картинка 312increases monotonically as the nuclei approach each other, but the bonding energy картинка 313has a minimum of картинка 314eV at approximately twice the Bohr radius картинка 315. With the single electron placed into the bonding state картинка 316, the total energy gain resulting from formation of the covalent bond is thus 1.77 eV. It is tempting to extend this model to the two electrons in the картинка 317molecule by placing the second electron in the same energy level. This electron would then also lower its energy by 1.77 eV, amounting to a total energy gain of 3.54 eV for the formation of the hydrogen molecule. Handling the additional electron in this way is too simplistic, as we shall see below, but the energy gain thus computed is at least similar to the experimental value of картинка 318eV. It is also clear that no additional electrons can be placed in the картинка 319energy level, as this would violate the Pauli principle. A third electron would need to occupy the картинка 320level, destabilizing the molecule as compared to картинка 321with two electrons. In covalently bonded solids, each atom forms bonds to several neighbors and the total energy gain per atom can be higher than for картинка 322. In silicon, for example, the energy gain per atom (or cohesive energy) is 4.6 eV.

Apart from a high cohesive energy, a characteristic feature of covalent bonding is the directional nature of the bonds. The preference for certain bond directions governs the crystal structures of covalently bonded solids, and these are more complex than the close‐packed structures typically encountered in metals. The treatment of the картинка 323molecular ion has demonstrated the idea of constructing bonding and antibonding molecular orbitals from a linear combination of atomic orbitals, but since we combined two isotropic 1s orbitals in this case, the directional character of covalent bonding did not emerge.

Figure 2.3demonstrates the consequences of using directional orbitals, such as p orbitals, for the formation of wave functions in molecules or solids. Figure 2.3a represents the case that we have just treated. Two s orbitals are combined to produce a bonding and an antibonding orbital by being added either in phase or out of phase (as indicated by the shading and the sign on the wave function). Due to the symmetry of the s orbital, the bond direction is not important. Combining an s orbital with a p orbital along the interatomic axis works in the same way (see Figure 2.3b). The p orbital is strongly anisotropic, but still the direction between the atoms does not matter in this case, because we define the intermolecular axis as the картинка 324axis and then use the картинка 325orbital aligned in this direction to form bonding and antibonding states. However, in this arrangement, no bonding interactions are possible between the s orbital of the left atom and the картинка 326and картинка 327orbitals of the right atom. This is illustrated in Figure 2.3c. No matter what linear combination coefficients we use, the overlap of the wave functions contains equal and mutually canceling bonding and antibonding contributions. This dilemma is the source of the directional preference in covalent bonding. In order to achieve the highest energy gain, it is often favorable to use linear combinations of the orbitals in one atom before combining them with other atoms. Examples for this are the картинка 328and картинка 329hybrid orbitals found in carbon‐based solids such as diamond or graphite, which directly explain the preferred bonding directions shown in Figure 1.7. The orbitals in graphene are also shown in Figure 615a All these orbitals are - фото 330orbitals in graphene are also shown in Figure 6.15a. All these orbitals are highly directional.

Figure 23 Linear combination of orbitals on neighboring atoms a Two s - фото 331

Figure 2.3 Linear combination of orbitals on neighboring atoms. (a) Two s orbitals as in the картинка 332molecular ion. (b) An s orbital and a картинка 333orbital (the choice of the картинка 334direction is arbitrary). (c) An s orbital with a картинка 335or картинка 336orbital. Due to symmetry, the total overlap is zero and no bonding or antibonding orbitals can be formed.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Solid State Physics»

Представляем Вашему вниманию похожие книги на «Solid State Physics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Solid State Physics»

Обсуждение, отзывы о книге «Solid State Physics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x