Знание-сила, 1999 №01

Здесь есть возможность читать онлайн «Знание-сила, 1999 №01» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1999, Жанр: sci_popular, periodic, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Знание-сила, 1999 №01: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Знание-сила, 1999 №01»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ежемесячный научно-популярный и научно-художественный журнал для молодежи

Знание-сила, 1999 №01 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Знание-сила, 1999 №01», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел – и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году – в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трехмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трехмерном или многомерном случае такого ответа нет – нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп – коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырех поколений математиков – от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция XX века уложилась в двадцать лет – благодаря большому числу ее участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким- нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почетных гостей были два богатыря из Франции: Андре Вейль и Жан- Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодежи трещали, мозги плавились, но в итоге кристаллизовались такие идеи, и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчет эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Все, что Вейль мог ответить молодому японцу, – это что если ему очень повезет по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришел к убеждению, что каждая эллиптическая кривая порождается модулярными функциями – точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже – в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как ее доказать или где ее проверить, и оттого ее долгое время никто не принимал всерьез. Первый отклик пришел лишь через тридцать лет – почти как в эпоху Ферма!

На протяжении многих веков умы математиков волновало решение этой теоремы Вот - фото 6

•На протяжении многих веков умы математиков волновало решение этой теоремы. Вот они перед вами…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Знание-сила, 1999 №01»

Представляем Вашему вниманию похожие книги на «Знание-сила, 1999 №01» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Журнал «Знание-сила» - Знание-сила, 2009 № 01 (979)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 06(840)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила 1998 № 06(852)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание - сила, 1998 № 05(851)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 04 (850)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 07 (841)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила 1997 № 09 (843)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 08 (842)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 10 (844)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 08 (854)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 2000 № 05-06 (875,876)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 07 (853)
Журнал «Знание-сила»
Отзывы о книге «Знание-сила, 1999 №01»

Обсуждение, отзывы о книге «Знание-сила, 1999 №01» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x