Знание-сила, 1999 №01

Здесь есть возможность читать онлайн «Знание-сила, 1999 №01» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1999, Жанр: sci_popular, periodic, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Знание-сила, 1999 №01: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Знание-сила, 1999 №01»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ежемесячный научно-популярный и научно-художественный журнал для молодежи

Знание-сила, 1999 №01 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Знание-сила, 1999 №01», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился еще при жизни Iaycca. Сам он пренебрег теоремой Ферма из принципа: не царское это дело – решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооруженные его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порожденных корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) – так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен еше Евклиду, но только Гаусс дал его строгое доказательство- А как обстоит делос целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее ее природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей все новых жертв в форме новых сложных теорий. Не удивительно, что к началу XX века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но ее соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры – Пуанкаре и Гильберт – демонстративно сторонились этой темы. В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трех важнейших проблем, стоящих перед математикой XX века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намек был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тоша в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями – значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою фуппу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путем действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А еше на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y 2 = АХ 3 + ВХ 2 + СХ и потому пересекаются с любой прямой в трех точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение – превратить ее в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой; может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодежь Европы; но в начале XX века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это – векторное пространство определенной размерности) с геометрическим родом той комплексной кривой, которая задается этим уравнением. Морделл пришел к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив – в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Знание-сила, 1999 №01»

Представляем Вашему вниманию похожие книги на «Знание-сила, 1999 №01» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Журнал «Знание-сила» - Знание-сила, 2009 № 01 (979)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 06(840)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила 1998 № 06(852)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание - сила, 1998 № 05(851)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 04 (850)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 07 (841)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила 1997 № 09 (843)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 08 (842)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 10 (844)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 08 (854)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 2000 № 05-06 (875,876)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 07 (853)
Журнал «Знание-сила»
Отзывы о книге «Знание-сила, 1999 №01»

Обсуждение, отзывы о книге «Знание-сила, 1999 №01» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x