Простейший способ уяснить, что такое площадь, – представить себе ее как некий участок плоской поверхности. Площадь может быть застелена ковром, покрыта травой, оклеена обоями или покрашена, и ребенку нетрудно будет понять, что иногда площади приходится измерять, чтобы проверить, хватит ли на них ковра, краски и т. п.
Первый шаг ребенка на пути к измерению площади – пересчитывание квадратиков . Нарисовав фигуру на клетчатой бумаге, несложно (хотя довольно трудоемко) сосчитать, сколько в нее вошло квадратиков. Проще всего это сделать, безусловно, для прямоугольника.
Тщательный подсчет позволит вам на практике убедиться в том, что в этом прямоугольнике уместился 21 квадратик. Но понимание того, что существует и более простой способ определить площадь прямоугольника, придет очень быстро. Здесь, к примеру, три строки по семь квадратиков, или семь столбиков по три квадратика, в любом случае площадь равна 3 × 7. Иными словами, нет никакой нужды считать квадратики поштучно, площадь прямоугольника можно найти, перемножив длины двух его сторон.
Площади более сложных фигур
Метод счета квадратиков работает также для фигур любой другой формы, хотя не везде и не всегда вам встретятся удобные для счета целые квадратики. К примеру:
В этом треугольнике два целых квадратика и четыре половинки, что дает суммарно четыре полных квадратика.
Учащимся начальной школы редко предлагают считать что-то менее удобное, чем половинки квадратиков, но на самом деле эту идею можно развить. Существует правило, позволяющее довольно точно определить площадь: все неполные квадратики, в которых больше половины квадрата, считаются целыми , а все те, в которых меньше, – не считаются вообще. Таким образом, в треугольнике ниже присутствует шесть целых квадратиков и три с «более-чем-половиной», что дает нам площадь, равную девяти квадратикам.
Проверьте себя
40. Загадочный квадратик
Перед вами жуткая головоломка, в которой один квадратик площади возникает совершенно ниоткуда! Исходным материалом для нее служит обычная решетка размером 8 × 8 клеток и площадью соответственно 64 клетки.
Вы видите, что решетка на рисунке разрезана на четыре части – A, B, C и D. Эти же самые части можно сложить иначе и получить следующий прямоугольник:
Убедитесь, что все части имеют в точности ту же форму, что и на первом рисунке. А теперь сосчитайте квадратики. Длина нашего прямоугольника составляет 13 клеток, ширина – 5. 13 раз по 5 будет 65… но это на единицу больше, чем в первоначальном квадрате. Откуда взялся лишний квадратик?
От учащихся начальной школы не требуется знание того, как вычисляется объем твердого тела. Тем не менее дети знакомятся с измерением объема жидкости в литрах; считается также, что они должны чувствовать и разумно оценивать, больше или меньше литра жидкости входит в конкретную емкость.
Несмотря на то что объем тела не будет рассматриваться в этом курсе сколько-нибудь подробно, полезно познакомить ребенка с некоторыми идеями, имеющими отношение к объему. Взяв два листа А4, можно провести интересный эксперимент.
Скатайте один лист вдоль длинной стороны, чтобы получилась длинная тонкая трубочка, а второй – вдоль короткой стороны, чтобы трубка получилась потолще и покороче.
Эти две трубки имеют разную форму, но сделаны из одного и того же листа бумаги. В какую из них войдет больше гречневой крупы?
Если инстинкт говорит вам, что в каждый цилиндр должно поместиться одинаковое количество гречки, то он ошибается. В короткую широкую трубку входит больше – приблизительно на 40 %.
Читать дальше
Конец ознакомительного отрывка
Купить книгу