Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 161 Решение Так как OB OD то точка О лежит на перпендикуляре к - фото 304

Рис. 161.

Решение. Так как OB = OD, то точка О лежит на перпендикуляре к середине отрезка BD, т. е. на прямой АС. Обозначим через К точку пересечения диагоналей квадрата. Из условия следует, что ОВ > ОС; значит, точка О лежит по одну сторону с точкой С относительно перпендикуляра к середине отрезка ВС. Отсюда следует, что точка О лежит на луче КС.

Обозначим КО через х и АВ = CD через y. Так как

и Применяя к прямоугольному треугольнику KOD теорему Пифагора получаем OD2 - фото 305

и

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 306

Применяя к прямоугольному треугольнику KOD теорему Пифагора, получаем: OD2= КО2+ KD2или 169 = х2+ 1/2 у2.

Предположим, что КО ? КС или

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 307

тогда х2 ? 1/2 у2(заметим, что числа x и y неотрицательны) и

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 308

т. е. площадь квадрата не превосходит 169, что противоречит условию. Следовательно,

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 309

т. е. КО < КС, и точка О лежит внутри квадрата. Теперь получаем

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 310

Из первого уравнения

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 311

Подставляя

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 312

вместо х во второе уравнение, после арифметических преобразований получаем уравнение у2– 10у – 119 = 0. Это квадратное уравнение имеет корни у1 = -7 и у2 = 17. Так как у есть длина отрезка, то у > 0 и, значит, y = 17.

Ответ: длина стороны квадрата равна 17; точка О лежит внутри квадрата.

Задачи для самостоятельного решения

70. Сторона квадрата равна 7 см. Определите диаметр окружности, описанной около квадрата. (1)

71. В квадрат вписан круг, а в полученный круг вписан квадрат. Найдите отношение площадей квадратов. (1)

72. Квадрат со стороной 3 см срезан по углам так, что образовался правильный восьмиугольник. Найдите сторону восьмиугольника. (2)

73. Дан квадрат ABCD. На его сторонах вовне построены равносторонние треугольники ABM, BCN, CDK, DAL. Найдите площадь четырёхугольника MNKL, если АВ = 1. (2)

1.9. Задачи на n-угольник (n > 3)

Для произвольного выпуклого четырёхугольника S = 1/2 d1d2 sin?. Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны, a S = рr, где р – полупериметр, r – радиус вписанной окружности.

Если около четырёхугольника можно описать окружность, то суммы противоположных углов равны по 180°.

Для правильного n-угольника:

R и r радиусы описанной и вписанной окружностей а длина стороны - фото 313

(R и r – радиусы описанной и вписанной окружностей, а – длина стороны правильного n-угольника).

Полезно также помнить, что в правильном шестиугольнике a6 = R.

Примеры решения задач

74. Сторона правильного шестиугольника равна 6. Найдите длину вписанной в него окружности (рис. 162). (1)

Рис 162 Решение В правильном шестиугольнике сторона равна радиусу описанной - фото 314

Рис. 162.

Решение. В правильном шестиугольнике сторона равна радиусу описанной окружности. Значит, треугольник АВО – правильный, угол АВО составляет 60°, a OB = R = 6. Радиусы вписанной в правильный шестиугольник окружности перпендикулярны его сторонам. В частности на рис. показано, что r ? АВ, где r = ОР. Тогда из прямоугольного треугольника ОРВ имеем:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 315 Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 316

Ответ:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 317

75. Сколько сторон имеет выпуклый многоугольник, у которого все углы равны, если сумма его внешних углов с одним из внутренних равна 468°? (2)

Решение. Сумма внешних углов выпуклого многоугольника равна 360°, сумма внутренних углов равна 180°(n – 2). Величина угла в правильном n-угольнике равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x