Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 167 Решение Пусть S1 и S2 две окружности удовлетворяющие условию - фото 334

Рис. 167.

Решение. Пусть S1 и S2 – две окружности, удовлетворяющие условию задачи. Поскольку точки М1 и М2 являются точками касания окружностей S1 и S2 с прямой М1М2, то О1М1 ? М1М2 и O2М2 ? М1М2. Соединим центры О1 и O2 этих окружностей и проведём через точку О1 прямую, параллельную прямой М1М2. Пусть точка К будет точкой пересечения прямых O2М2 и прямой, проведённой параллельно прямой М1М2 через точку О1. Получим прямоугольный треугольник O1O2K с гипотенузой O1O2. Применяя к прямоугольному треугольнику О1КO2 теорему Пифагора, имеем:

О1О22= O1K2+ KO22(1)

Поскольку

то Поскольку КМ2 О1М1 и КO2 КМ2 М2O2 то КO2 5 см Наконец Теперь из - фото 335

то

Поскольку КМ2 О1М1 и КO2 КМ2 М2O2 то КO2 5 см Наконец Теперь из - фото 336

Поскольку КМ2 = О1М1 и КO2 = КМ2 – М2O2, то КO2 = 5 см. Наконец,

Теперь из равенства 1 с учётом 2 и 3 а также КO2 5 см следует что - фото 337

Теперь из равенства (1) с учётом (2) и (3), а также КO2 = 5 см, следует, что 5/4 М1М22= М1М22+ 25, откуда

Ответ 10 см Задачи для самостоятельного решения 85 Дуги А1В1 и А2В2 равной - фото 338

Ответ: 10 см.

Задачи для самостоятельного решения

85. Дуги А1В1 и А2В2 равной длины 1 принадлежат разным окружностям с радиусами R1 и R2. Найдите отношение градусных мер центральных углов, соответствующих этим дугам. (1)

86. Точка лежит вне круга на расстоянии диаметра от центра круга. Найдите угол между касательными, проведенными из данной точки к данному кругу. (1)

87. В пересечение двух равных кругов вписан ромб с диагоналями 12 и 6 см. Найдите радиус окружностей. (2)

88. В равнобедренный треугольник, у которого боковая сторона равна 10 см, а основание 6 см, вписана окружность. Определите расстояние между точками касания, находящимися на боковых сторонах треугольника. (2)

89. Дано круговое кольцо, площадь которого Q. Определите длину хорды большего круга, касательной к меньшему. (2)

90. Круг радиуса

разделен на два сегмента хордой равной стороне вписанного в этот круг - фото 339

разделен на два сегмента хордой, равной стороне вписанного в этот круг правильного треугольника. Определите площадь меньшего из этих сегментов. (2)

91. Хорды АВ и АС имеют одинаковую длину. Величина образованного ими вписанного в окружность угла равна ?/6. Найти отношение площади той части круга, которая заключена в этом угле, к площади всего круга. (3)

§ 2. Основные идеи и методы решения планиметрических задач

Если в предыдущем параграфе мы рассматривали задачи, в которых центральное место принадлежит формулам планиметрии и тригонометрии, то теперь перейдем к задачам, где главную роль будут играть не формулы, а теоремы о свойствах и признаках геометрических фигур. Задачи в параграфе разбиты уже не по объекту исследования (треугольник, трапеция, круг и т. д.), а по ведущей идее решения.

2.1. Задачи на вписанную в треугольник окружность

Если в условии задачи говорится об описанной около треугольника окружности, то в большинстве случаев строить её не нужно. И наоборот, когда речь идёт о вписанной в треугольник окружности. Здесь не только нужно строить саму окружность, но и проводить радиусы к точкам касания (перпендикуляры к сторонам), а также соединять центр окружности с вершинами треугольника. При этом образуются равные треугольники.

Примеры решения задач

92. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 5 и 12 см. Найдите катеты треугольника (рис. 168). (1)

Рис 168 Решение Впишем в треугольник ABC окружность и соединим её центр О с - фото 340

Рис. 168.

Решение. Впишем в треугольник ABC окружность и соединим её центр О с вершинами В, С. Проведём также перпендикуляры ОК, ON, ОМ (см. рис.). Они являются радиусами вписанной в треугольник окружности. Из равенства треугольников ВМО и BNO следует, что ВМ = BN = 5. Аналогично, из равенства треугольников ОКС и ONC следует, что КС = NC = 12. Заметим также, что AMOK– квадрат и, значит, AM = АК = r. Получаем, что АВ = АМ + МВ = r + 5, АС = АК + КС = r + 12. По теореме Пифагора получаем: АВ2+ АС2= ВС2.

(r + 5)2+ (r + 12)2= 172;

r2+ 10r + 25 + r2+ 24r + 144 = 289;

2r2+ 34r – 120 = 0;

r2+ 17r – 60 = 0; r = 3.

Катеты равны 5 + r = 8 и 12 + r = 15.

Ответ: 8 см; 15 см.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x