Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

93. В треугольник вписана окружность с радиусом 4. Одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Найдите длины сторон треугольника (рис. 169). (2)

Рис 169 Решение Как и в предыдущей задаче изобразим вписанную в треугольник - фото 341

Рис. 169.

Решение. Как и в предыдущей задаче, изобразим вписанную в треугольник окружность и соединим центр окружности О с вершинами треугольника. Проведем также перпендикуляры ОМ, ОТ, ОК, являющиеся радиусами окружности. Получены три пары равных треугольников: OAK и ОAT, ОВМ и ОВТ, ОСМ и ОСК. По условию одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Пусть для определенности эта сторона – ВС и ВМ = 8, МС = 6. Тогда ВТ = ВМ = 8, СК = СМ = 6. Длины отрезков АК и AT обозначим через х. Для нахождения величины х воспользуемся формулой S = рг. По формуле Герона

Ответ 13 14 15 Задачи для самостоятельного решения 94 Точка касания - фото 342

Ответ: 13; 14; 15.

Задачи для самостоятельного решения

94. Точка касания окружности, вписанной в равнобедренный треугольник, делит боковую сторону на отрезки в 3 и 4 см, считая от основания. Найдите периметр треугольника. (1)

95. Около окружности описана равнобокая трапеция, у которой боковая сторона точкой касания делится на отрезки 4 и 9 см. Найдите площадь трапеции. (2)

96. В прямоугольный треугольник, периметр которого равен 36 см, вписана окружность. Гипотенуза делится точкой касания в отношении 2:3. Найти длины сторон треугольника. (3)

2.2. Задачи на свойства параллельных прямых

В ряде задач используют свойства параллельных прямых: при пересечении двух параллельных прямых третьей образуются равные углы (рис. 170).

Рис 170 Квартеты равных углов1 4 6 8 2 3 5 7 Особенно - фото 343

Рис. 170.

Квартеты равных углов:?1 = ?4 = ?6 = ?8; ?2 = ?3 = ?5 = ?7.

Особенно часто эти свойства применяются при решении задач на параллелограмм.

Примеры решения задач

97. В параллелограмме ABCD проведена биссектриса угла А, которая пересекает сторону ВС в точке F. Найдите длину BF, если сторона АВ = 11 (рас. 171). (1)

Рис 171 Решение Из рисунка видно что BFA FAD внутренние накрест - фото 344

Рис. 171.

Решение. Из рисунка видно, что ?BFA = ?FAD (внутренние накрест лежащие при параллельных прямых), но ?BAF = ?FAD по условию, и поэтому ?BFA = ?BAF. Значит, треугольник ABF – равнобедренный, и BF = АВ = 11.

Ответ: 11.

98. В параллелограмме ABCD сторона АВ равна 6 см, а высота, проведенная к основанию AD, равна 3 см. Биссектриса угла BAD пересекает сторону ВС в точке М так, что МС = 4 см. N – точка пересечения биссектрисы AM и диагонали BD. Вычислить площадь треугольника BNM (рис. 172). (3)

Рис 172 Решение Пусть АВCD данный в условии задачи параллелограмм - фото 345

Рис. 172.

Решение. Пусть АВCD – данный в условии задачи параллелограмм. Проведем через точку N высоту параллелограмма QR. Обозначим через ? величину угла ВАМ; тогда величина угла АМВ равна ?, т. к. ВС||AD и AM – секущая. Следовательно, треугольник АВМ равнобедренный и ВМ = АВ = 6 см, откуда заключаем, что ВС = AD = ВМ + МС = 6 + 4 = 10 см. Поскольку ?ВМА = ?MAD и ?MBN = ?BDA, как накрест лежащие углы при параллельных ВС и AD, то треугольники BMN и AND подобны по двум углам. Так как в подобных треугольниках сходственные стороны пропорциональны сходственным высотам, то из подобия треугольников AND и BNM имеем:

откуда QN 98 см Площадь треугольника BNM равна Ответ 278 см2 Задачи - фото 346

откуда QN = 9/8 см.

Площадь треугольника BNM равна:

Ответ 278 см2 Задачи для самостоятельного решения 99 В параллелограмме ABCD - фото 347

Ответ: 27/8 см2.

Задачи для самостоятельного решения

99. В параллелограмме ABCD угол BCD равен 60°, длина стороны АВ равна а. Биссектриса угла BCD пересекает сторону AD в точке N. Найдите площадь треугольника NCD. (1)

100. Периметр параллелограмма равен 90 см и острый угол содержит 60°. Диагональ параллелограмма делит его тупой угол в отношении 1:3. Найдите стороны параллелограмма. (1)

101. В параллелограмме ABCD биссектриса тупого угла В пересекает сторону AD в точке F. Найдите периметр параллелограмма, если АВ = 12 и AF: FD = 4:3. (1)

2.3. Задачи на пропорциональные отрезки

Теорема Фалеса (а также теоремы Чевы и Менелая) применяются в первую очередь тогда, когда в задаче даны соотношения между отрезками. Очень часто при этом приходится проводить дополнительный отрезок. Идеи использования теоремы Фалеса хорошо видны на следующих примерах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x