Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Примеры решения задач

102. Докажите, что медианы в треугольнике делятся в отношении 2:1, считая от вершины (известная теорема школьного курса математики). (2)

Самый простой путь решения (рис. 173):

Рис 173 Проведем медианы AM и ВК а также отрезок МТ параллельный ВК Имеем - фото 348

Рис. 173.

Проведем медианы AM и ВК, а также отрезок МТ, параллельный ВК. Имеем: т. к. ВМ = МС, то КТ = ТС. Но тогда АК = КС = 2КТ и, значит, АО: ОМ = АК: КТ = 2, что и требовалось доказать.

103. В треугольнике ABC на стороне ВС взята точка М так, что MB = МС, а на стороне АС взята точка К так, что АК = 3 ? КС. Отрезки ВК и АМ пересекаются в точке О. Найдите AO/OM (рис. 174). (2)

Рис 174 Решение Обозначим длину отрезка КС через а тогда АК За Проведём - фото 349

Рис. 174.

Решение. Обозначим длину отрезка КС через а, тогда АК = За. Проведём MP||ВК По теореме Фалеса КР = РС = a/2. По теореме о пропорциональных отрезках имеем:

Ответ 6 104 В треугольнике ABC на стороне АВ взята точка К так что АК ВК - фото 350

Ответ: 6.

104. В треугольнике ABC на стороне АВ взята точка К так, что АК: ВК = 1:2, а на стороне ВС взята точка L так, что CL: BL = 2:1. Пусть Q – точка пересечения прямых AL и СК. Найти площадь треугольника ABC, если дано, что площадь треугольника BQC равна 1 (рис. 175). (3)

Рис 175 Решение Проведём через точку L прямую LM параллельно прямой СК Из - фото 351

Рис. 175.

Решение. Проведём через точку L прямую LM параллельно прямой СК. Из подобия треугольников MBL и КВС следует, что

Из подобия треугольников AKQ и AML находим Кроме того имеем следующие - фото 352

Из подобия треугольников AKQ и AML находим:

Кроме того имеем следующие равенства Ответ 74 Задачи для самостоятельной - фото 353

Кроме того, имеем следующие равенства:

Ответ 74 Задачи для самостоятельной работы 105 ВМ МС 31 АК КВ - фото 354

Ответ: 7/4.

Задачи для самостоятельной работы

105. ВМ: МС = 3:1, АК = КВ. Найдите: SAKO/SABC(рис. 176). (2)

Рис 176 106 На сторонах АВ и АС треугольника ABC взяты точки M и N такие - фото 355

Рис. 176.

106. На сторонах АВ и АС треугольника ABC взяты точки M и N, такие, что AM/MB = CN/NA = 1/2.

Отрезки BN и СМ пересекаются в точке К. Найти отношения отрезков BK/KN и CK/KM.(2)

2.4. Задачи на свойства биссектрисы треугольника

Биссектриса треугольника обладает одним замечательным свойством: она делит противолежащую сторону на отрезки, пропорциональные соответствующим боковым сторонам (рис. 177).

с/а = d/b или c/d = a/b.

Рис 177 Это свойство часто используется в задачах в которых фигурирует - фото 356

Рис. 177.

Это свойство часто используется в задачах, в которых фигурирует биссектриса треугольника.

Примеры решения задач

107. В треугольнике ABC проведена биссектриса AD. Найдите периметр треугольника ABC, если АС = 4; DC = 2; BD = 3 (рис. 178). (1)

Рис 178 Решение По свойству биссектрисы BDAB DCAC 3AB 24 АВ 6 - фото 357

Рис. 178.

Решение. По свойству биссектрисы BD/AB = DC/AC; 3/AB = 2/4; АВ = 6.

Периметр треугольника РАВС = 6 + 5 + 4 = 15.

Ответ: 15.

108. Дан треугольник ABC, в котором ?В = 30°, АВ = 4, ВС = 6. Биссектриса угла В пересекает сторону АС в точке D. Определите площадь треугольника ABD (рис. 179). (2)

Рис 179 Решение По свойству биссектрисы ADDC ABBC 46 23 Пусть AD - фото 358

Рис. 179.

Решение. По свойству биссектрисы AD/DC = AB/BC = 4/6 = 2/3.

Пусть AD = 2х; DC = Зх.

Ответ 125 Задачи для самостоятельного решения 109 В треугольнике ABC где - фото 359

Ответ: 12/5.

Задачи для самостоятельного решения

109. В треугольнике ABC, где АВ = 6, АС = 4, биссектриса AL и медиана ВМ пересекаются в точке О. Найдите BO/OM (1).

110. Определите стороны треугольника, если медиана и высота, проведённые из вершины одного угла, делят этот угол на три равные части, а сама медиана равна 10 см. (2)

2.5. Задачи на подобие

Два треугольника подобны: по двум углам, по двум сторонам и углу между ними, по трём сторонам. Очень важно в задаче увидеть подобные треугольники или другие подобные фигуры. Для этого нужна хорошая практика решения задач.

При решении задач на прямоугольный треугольник полезно знать, что высота, проведённая из прямого угла, делит его на два подобных треугольника (рис. 180):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x