Андрей Павлов - Математические олимпиады по лигам. 5-9 классы

Здесь есть возможность читать онлайн «Андрей Павлов - Математические олимпиады по лигам. 5-9 классы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические олимпиады по лигам. 5-9 классы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические олимпиады по лигам. 5-9 классы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.
Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.

Математические олимпиады по лигам. 5-9 классы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические олимпиады по лигам. 5-9 классы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Андрей Николаевич Павлов

Математические олимпиады по лигам. 5–9 классы

Предисловие

Когда мы слышим слово «олимпиада», то ассоциируем его с сильными учащимися, отличниками. Подобный подход оправдан, если речь идет о городских, районных, областных, республиканских, Всероссийских и Международных математических олимпиадах. На таких уровнях сама цель олимпиад – выявление одаренных и нестандартно мыслящих учащихся, определение сильнейших из них. Однако задачи внутришкольных олимпиад нам видятся гораздо шире.

В книге представлен опыт автора по проведению олимпиад в лицее г. Лобни Московской области. Их отличительная особенность: в олимпиадах участвуют все! Причем термин «все» следует понимать в буквальном смысле слова, а именно как 100 %-ный охват учащихся, без исключений. С этим связаны и дифференцирование заданий по уровню сложности, и включение в олимпиады, помимо нестандартных, чисто технических заданий (примеры, уравнения, типовые задачи и т. д.).

Рассмотрим основное содержание и правила проведения наиболее популярных олимпиад, которые и вошли в книгу.

Олимпиады по лигам (5–6 классы)

Новая и чрезвычайно интересная форма внеклассной работы по предмету. Учителя, знающие, как устроены лиги в чемпионатах страны по различным видам спорта, без труда разберутся в этой системе.

Принцип проведения игры прост. Сначала дается общее задание для всех, по результатам которого определяется, кто в какой лиге (второй, первой, высшей или суперлиге) начинает играть.

Далее выбирается день недели, в который постоянно будут проходить соревнования. Выбор дня определяется действующим расписанием. Желательно, чтобы все классы параллели имели одинаковое количество уроков в этот день (напоминаем, что в олимпиаде участвуют все).

Для лучшего понимания рассмотрим правила игры на конкретном примере.

Пусть в параллели пятых классов 53 человека. После предварительного тура 10 человек определены в суперлигу, 15 – в высшую, 15 – в первую и 13 – во вторую. Определен постоянный день игр – четверг.

В первый такой четверг соревнуются участники второй лиги (вторая лига, 1 тур). Они решают шесть заданий за 40–60 мин (время определяется учителем). После проведения первого тура и проверки работ участники, занявшие первые пять мест, переходят в первую лигу. Остальные 8 человек получают места с 53 по 46.

В следующий четверг соревнуются 20 человек (15 человек, определенных первоначально в первую лигу плюс пятеро перешедших из второй лиги). После проверки работ происходит следующее: лучшие 5 участников переходят в высшую лигу; остальные 15 человек получают места с 45 по 31; 5 участников, занявших последние места (в нашем примере 41–45 места), переходят во вторую лигу.

В следующий (третий) четверг соревнуются 20 человек (15 человек, определенных изначально в высшую лигу плюс пятеро перешедших из первой лиги). После проверки работ, как и в предыдущем случае: 5 лучших участников переходят в суперлигу; остальные 15 человек получают места с 30 по 16; 5 участников, занявших 26–30 места, переходят в первую лигу.

В четвертый четверг проходит первый тур суперлиги. Все участники в итоге получают места с 1 по 15, причем участники, занявшие 11–15 места, переходят в высшую лигу.

Затем по тем же правилам проходит второй тур в каждой из четырех лиг, затем третий и т. д.

Если учащийся по болезни или по другим причинам пропускает какой-нибудь тур своей лиги, то он набирает 0 баллов и выбывает в более низшую лигу (а если он во второй лиге – просто занимает последнее место).

В книге представлено два комплекса олимпиад по лигам:

1. Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон. Учителя математики знают, что если пятиклассники учатся по учебному комплекту Г. В. Дорофеева и Л. Г. Петерсон, то за 5 класс проходится чуть ли не вся программа 6 класса. Это нашло свое отражение в содержании задач.

Всего в лигах предусмотрено 10 туров. Итоговые результаты подводятся просто (лучше всего это сделать в Excel). Пусть некоторый учащийся в течение десяти туров занимал места: ах, а2, ах... а. Из данных чисел отбрасываются лучший и худший результаты, а далее считается среднее арифметическое оставшихся 8 чисел:

У кого меньше число Ь тот и выиграл для сортировки участников по местам можно - фото 1

У кого меньше число Ь, тот и выиграл (для сортировки участников по местам можно применить известную в Excel команду РАНГ). Небольшое пояснение: лучший результат отбрасывается, так как бывает случайное попадание учащегося в высшую лигу и суперлигу перед первым туром, а худший результат учащийся также может показать случайно, например, вследствие пропуска по болезни.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические олимпиады по лигам. 5-9 классы»

Представляем Вашему вниманию похожие книги на «Математические олимпиады по лигам. 5-9 классы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические олимпиады по лигам. 5-9 классы»

Обсуждение, отзывы о книге «Математические олимпиады по лигам. 5-9 классы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x