Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

Семья Римана была бедной. Его отец Фридрих – лютеранский пастор и ветеран Наполеоновских войн; мать Шарлотта (урожденная Эбелль) умерла, когда Риман был еще ребенком. Кроме Бернхарда в семье были еще сын и четверо дочерей. До 10 лет мальчика обучал отец, а в 1840 г., когда Риман начал посещать местную школу в Ганновере, он поступил сразу в третий класс. Бернхард был очень стеснителен, но его математическая одаренность сразу бросалась в глаза. Директор школы разрешил Риману читать книги по математике из его личного собрания. Получив от него 900-страничный том Лежандра по теории чисел, Риман проглотил книгу за неделю.

В 1846 г. молодой человек отправился в Гёттингенский университет, где поначалу планировал изучать теологию. Гаусс, однако, распознал в нем математический талант и посоветовал сменить специализацию; Риман (с одобрения родителей) так и поступил. Со временем Гёттинген стал одним из лучших мест в мире для изучения математики, но в те дни, несмотря на присутствие Гаусса, математику там преподавали совершенно обыкновенно. Так что Риман перебрался в Берлин, где работал под руководством геометра Якоба Штайнера, алгебраиста и специалиста по теории чисел Дирихле и специалиста по теории чисел и комплексному анализу Готтхольда Эйзенштейна. Он изучал комплексный анализ и эллиптические функции.

Коши распространил дифференциальное и интегральное исчисление с действительных чисел на комплексные. Комплексный анализ появился на свет, когда возражения Беркли против флюксий Ньютона в конце концов получили достойный ответ от Карла Вейерштрасса, сформулировавшего строгое определение «предельного перехода». Одной из горячих тем в комплексном анализе середины XIX в. было исследование эллиптических функций, которые, помимо прочего, определяют длину дуги эллипса. Эти функции представляют собой глубокое обобщение тригонометрических функций. Фурье использовал одно базовое свойство тригонометрических функций – они являются периодическими и принимают те же значения при добавлении к аргументу функции 2π. Эллиптические функции имеют два независимых комплексных периода и повторяют те же значения на решетке из параллелограммов на комплексной плоскости. Они демонстрируют красивую связь между комплексным анализом и группами симметрии (переносами решетки). Эта идея используется в доказательстве Великой теоремы Ферма, данном Уайлсом. Кроме того, эллиптические функции появляются в механике, к примеру в выводе точной формулы для периода колебаний маятника. Более простая формула, которую выводят в школьном курсе физики, является аппроксимацией колебаний маятника для очень маленького угла.

Риману нравился подход Дирихле к математике, очень напоминавший его собственный. Вместо систематического логического развития оба предпочитали начинать с интуитивного понимания проблемы в целом; затем разбирались в центральных концепциях и взаимоотношениях и лишь затем заполняли логические пробелы. Тот и другой всеми силами старались избежать объемных вычислений. Многие самые успешные математики сегодняшнего дня поступают так же. Доказательства жизненно важны для математики, и логика их должна быть безупречной, но доказательства часто приходят после общего понимания. Слишком строгий подход или слишком ранние попытки доказательства могут задушить хорошую идею. Риман практиковал такой подход на протяжении всей своей научной карьеры. У этого метода было одно большое преимущество: общую линию рассуждений в нем можно проследить, не тратя многие недели на проверку сложных расчетов. Его недостатком, по крайней мере с точки зрения некоторых, является необходимость мыслить концептуально, а не просто пробиваться через череду расчетов.

Для получения степени доктора философии Риман переписал книгу по комплексному анализу с введением в нее топологических методов. Сделал он это из-за особенности, с которой приходится сражаться каждому студенту: склонность комплексных функций к неоднозначности . В действительном анализе тоже есть намеки на это явление. К примеру, каждое ненулевое положительное действительное число имеет два квадратных корня: один положительный, другой отрицательный. Эту возможность следует иметь в виду при решении алгебраических уравнений, но справиться с этим несложно – достаточно разбить функцию с квадратным корнем на две отдельные части: с положительным квадратным корнем и с отрицательным квадратным корнем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x