Та же неоднозначность свойственна и квадратному корню комплексного числа, но здесь уже недостаточно разделить его на две отдельные функции. Понятия «положительный» и «отрицательный» не имеют ясного – и полезного – значения в случае комплексных чисел, так что естественного способа разделить две эти величины просто не существует. Но есть и более глубокий момент. В случае действительных чисел, если мы будем изменять положительное число непрерывно, то его положительный квадратный корень тоже будет меняться непрерывно, как и его отрицательный квадратный корень. Более того, два этих корня всегда будут различны. Но в комплексном случае непрерывное изменение исходного числа может превратить один из его квадратных корней в другой, не прекращая при этом непрерывно их сдвигать.
Традиционный способ разобраться с этим состоял в том, чтобы разрешить функции с разрывами, но тогда вам придется все время проверять, не приближаетесь ли вы к разрыву. У Римана была идея получше: модифицировать обычную комплексную плоскость так, чтобы сделать квадратный корень однозначной функцией. Делается это таким образом: две одинаковые плоскости помещаются одна над другой и прорезаются вдоль положительной части действительной оси; затем обе щели соединяются так, чтобы верхняя плоскость переходила в нижнюю при пересечении прорези. Теперь, если интерпретировать квадратный корень с использованием этой «Римановой поверхности», он станет однозначным. Это радикальный подход. Идея в том, чтобы прекратить беспокоиться насчет того, с каким из множества возможных значений вы в данный момент имеете дело, и позволить геометрии Римановой поверхности обо всем позаботиться. И это новшество не было единственным в докторской диссертации Римана. Еще он предложил использовать для доказательства существования определенных функций идею из математической физики – принцип Дирихле. Этот принцип гласит, что функция, минимизирующая энергию, представляет собой решение уравнения в частных производных – уравнения Пуассона, – которому подчиняются гравитационные и электрические поля. Гаусс и Коши уже открыли на тот момент, что это самое уравнение возникает естественным образом в комплексном анализе в связи с дифференциальным исчислением.
* * *
Риман погрузился в академическую жизнь. Природная стеснительность сделала для него чтение лекций настоящим испытанием, но со временем он приспособился и научился находить общий язык с аудиторией. В 1857 г. он был назначен полным профессором и в том же году опубликовал еще одну крупную работу по теории абелевых интегралов – широкого обобщения эллиптических функций, обеспечившего плодородную почву для его топологических методов. Вейерштрасс тогда тоже представил статью по этой теме в Берлинскую академию, но теперь, когда вышла статья Римана, Вейерштрасс был настолько ошеломлен ее новизной и глубиной, что отозвал свою статью и никогда больше ничего не публиковал в этой области. Имейте в виду, это не помешало ему указать на трудноуловимую ошибку в использовании Риманом принципа Дирихле. Дело в том, что Риман активно использовал в своей работе функцию, которая минимизировала некоторую связанную с ней величину. Это вело к важным результатам, но Риман не привел строгого доказательства того, что такая функция в принципе существует. (Из физических соображений он был убежден, что она должна существовать, но подобные рассуждения не обладают достаточной строгостью и могут привести к ошибке.) На этом этапе математики разделились на тех, кто жаждал логической строгости и потому считал это упущение серьезным, и тех, кого убедили физические аналогии и кого больше интересовало уточнение результатов. Риман, пребывавший, естественно, во втором лагере, сказал, что даже если в его логике и есть какой-то недочет, то принцип Дирихле для него был всего лишь самым удобным способом посмотреть, что происходит, и заявленные результаты в целом верны.
В каком-то смысле это был довольно обычный спор между поборниками теоретической математики и сторонниками математической физики; та же драма регулярно разыгрывается и сегодня, будь то в связи с дельта-функцией Дирака или диаграммами Фейнмана. Обе стороны были правы в соответствии со своими собственными стандартами. Мало смысла сдерживать прогресс в физике только потому, что какая-то правдоподобная и эффективная методика не может быть обоснована с полной логической строгостью. Но верно и то, что отсутствие такого обоснования – потенциальная бомба для математиков, намекающая, что в наших представлениях по этому вопросу чего-то не хватает. Ученик Вейерштрасса Герман Шварц удовлетворил математиков, отыскав другое доказательство Римановых результатов, но физики по-прежнему предпочитали нечто более интуитивное. Со временем Гильберт разобрался с проблемой существования, доказав новый вариант принципа Дирихле, одновременно строгий и подходящий для методов Римана. А пока физики продвигались вперед, чего не смогли бы сделать, если бы слишком внимательно прислушивались к возражениям математиков. Кстати говоря, попытки математиков обосновать интуитивные результаты Римана дали массу весьма значительных результатов и концепций, которые не были бы открыты, если бы математики в этом вопросе солидаризовались с физиками. Все оказались в выигрыше.
Читать дальше
Конец ознакомительного отрывка
Купить книгу