Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это предположение, окажись оно верным, имело бы множество значительных следствий. В частности, из него следует, что различные приближенные формулы с участием простых чисел на самом деле более точны, чем можно доказать в настоящее время. Вообще, диапазон тем, на которые повлияло бы доказательство гипотезы Римана, необъятен. Однако пока для этой гипотезы нет ни доказательства, ни опровержения. Есть кое-какие «экспериментальные» данные: в 1914 г. Годфри Харолд Харди доказал, что на критической линии действительно лежит бесконечное число нулей. В 2001–2005 гг. программа Себастьяна Веденивски ZetaGrid подтвердила, что первые 100 млрд нулей лежат на критической линии. Однако в этой области теории чисел подобный результат не может быть до конца убедительным, поскольку многие правдоподобные, но неверные гипотезы впервые нарушаются очень-очень далеко, на невообразимо гигантских числах. Гипотеза Римана – часть Задачи № 8 в знаменитом Гильбертовом списке 23 великих нерешенных математических задач (глава 19); она же является одной из так называемых Задач тысячелетия, отобранных Институтом Клэя в 2000 г.; объявлено, что за верное решение любой из этих задач будет выплачена премия в один миллион долларов. Вообще, гипотеза Римана – сильный претендент на звание крупнейшей нерешенной задачи во всей математике.

Риман доказал свою точную формулу для числа простых чисел при помощи, помимо прочего, анализа Фурье. Эту формулу можно рассматривать как свидетельство того, что преобразование Фурье переводит множество нулей дзета-функции в множество простых степеней и некоторое количество элементарных множителей. То есть нули дзета-функции управляют нерегулярностями простых чисел. Маркуса дю Сотоя назвать свою книгу «Музыка простых чисел» вдохновила поразительная аналогия. Анализ Фурье помогает разложить сложную звуковую волну на базовые синусоидальные компоненты. Аналогично великолепная симфония простых чисел раскладывается на отдельные «ноты», исполняемые последовательно каждым нулем дзета-функции. Громкость каждой ноты определяется величиной действительной части соответствующего нуля. Таким образом, гипотеза Римана говорит нам, что все нули звучат одинаково громко.

Озарения Римана, позволившие ему глубоко заглянуть в царство дзета-функции, дают ему право именоваться музыкантом простых чисел.

16. Кардинал бесконечных множеств. Георг Кантор

Понятие бесконечности того что может продолжаться вечно без остановки - фото 60

Понятие бесконечности, того, что может продолжаться вечно, без остановки, завораживала человека испокон веков. Философы, разумеется, повеселились в этой теме вволю. На протяжении последних нескольких столетий математики, в частности, широко использовали бесконечность; точнее говоря, они использовали множество различных интерпретаций бесконечности во множестве различных контекстов. Бесконечность – это не просто очень большое число. Строго говоря, это вообще не число, потому что бесконечность больше любого конкретного числа. Если бы бесконечность была числом, это означало бы, что она должна быть больше самой себя. Аристотель рассматривал бесконечность как процесс, продолжающийся неопределенно долго: до какого бы числа вы ни добрались, вы всегда сможете найти большее число. Философы называют это потенциальной бесконечностью.

Некоторые индийские религии, и среди них джайнизм, буквально очарованы большими числами. Согласно джайнскому математическому тексту «Сурья-праджняпти», некий индийский математик-визионер заявил около 400 г. до н. э., что существует множество размеров бесконечности. Звучит как мистическая чепуха, не правда ли? Если бесконечность – это самое большое, что только может существовать, то как одна бесконечность может быть больше другой? Но ближе к концу XIX в. немецкий математик Георг Кантор разработал Mengenlehre – теорию множеств – и воспользовался ею, чтобы объявить: бесконечность может быть актуальной, а не просто Аристотелевым процессом потенциальности, и вследствие этого одни бесконечности могут быть больше, чем другие.

В то время многие математики также посчитали эту идею мистической чепухой. Кантору пришлось вести бесконечные баталии с критиками, многие из которых использовали язык, который в сегодняшнем мире, вероятно, стал бы поводом для судебных исков. Он страдал от депрессии, которая еще больше усиливалась, вероятно, от тех издевок, которым он постоянно подвергался. Сегодня, однако, большинство математиков считают, что Кантор был прав. В самом деле, различие между самой маленькой бесконечностью и любой бесконечностью побольше является фундаментальным во многих областях прикладной математики, в первую очередь в теории вероятностей. А теория множеств стала логическим основанием для математики в целом. Гильберт, один из крупнейших математиков среди тех, кто рано понял обоснованность идей Кантора, сказал: «Никто не сможет изгнать нас из рая, созданного Кантором».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x