Хотя многие из чисел Мерсенна действительно простые, сам Мерсенн допустил в своих расчетах несколько ошибок. Например, он определил как простое число M 67. Делители этого числа впервые нашел в 1903 году Фрэнк Нельсон Коул. 31 октября математика пригласили сделать часовой доклад в Американском математическом обществе. Во время лекции Коул, не говоря ни слова, подошел к доске и вручную сначала вычислил значение числа 2 67 – 1, а затем перемножил 139 707 721 и 761 838 257 287, продемонстрировав, что результаты совпадают, – и молча же вернулся на свое место под гром аплодисментов. Позже он признался, что на то, чтобы найти делители числа 2 67 – 1, у него ушло “три года воскресений”.
С 1951 года поиск простых чисел ведется исключительно с помощью компьютеров. Появление все более быстрых алгоритмов позволяет математикам вычислять все бо́льшие и бо́льшие простые числа Мерсенна. На момент написания этой книги самое большое известное простое число – M 74207281, имеющее 22 338 618 знаков. Его вычислил 17 сентября 2015 года Кёртис Купер, профессор Университета Центрального Миссури, в рамках проекта GIMPS ( Great Internet Mersenne Prime Search, “Масштабный интернет-проект по поиску простых чисел Мерсенна”) – добровольного совместного проекта распределенных вычислений, участники которого за двадцать с лишним лет его существования уже рассчитали пятнадцать самых больших простых чисел Мерсенна. По сложившейся традиции авторы открытия отметили свой успех, откупорив бутылку шампанского.
Итак, мы знаем, что такое простые числа, и доказали, что их ряд бесконечен. Нам известно, что в современном мире они могут приносить пользу и что они встречаются в природе. Но в области простых чисел еще много белых пятен: например, мы не знаем, верны ли определенные гипотезы. Одна из наиболее известных – проблема Гольдбаха, названная так в честь немецкого математика Христиана Гольдбаха. Гипотеза гласит, что любое четное число, большее двух, можно представить в виде суммы двух простых чисел. Для малых четных чисел это утверждение легко проверить: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 и так далее. С помощью компьютеров были проверены и гораздо большие числа – правило не подвело ни разу. Однако до сих пор неизвестно, верна ли гипотеза Гольдбаха во всех случаях.
Другая недоказанная гипотеза касается пар простых чисел, отличающихся на 2: таких как 3 и 5 или 11 и 13, – их еще называют числами-близнецами. Гипотеза о числах-близнецах гласит, что таких пар – бесконечное множество, однако доказать истинность этого утверждения пока никому не удалось.
Пожалуй, самая большая загадка простых чисел связана с их распределением. Среди малых натуральных чисел простые встречаются очень часто, но с ростом значений – все реже и реже. Математиков интересует, с какой скоростью убывает плотность простых чисел и как много мы вообще способны узнать об их частоте в числовом ряду. Какой-то строгой закономерности в их появлении не наблюдается, но это вовсе не значит, что они выскакивают где попало. В своей книге “Рекорды простых чисел” ( The Book of Prime Number Records ) Пауло Рибенбойм формулирует это таким образом:
Можно с довольно хорошей точностью предсказать количество простых чисел, меньших N (особенно при больши́х значениях N ); с другой стороны, в распределении простых чисел в коротких интервалах наблюдается некая заложенная случайность. Это сочетание “случайности” и “предсказуемости” приводит к тому, что распределению простых чисел свойственны одновременно и упорядоченность, и элемент неожиданности.
Загадка простых чисел волнует многие поколения математиков. А ведь кажется, куда проще – даже дети в начальной школе могут объяснить, что такое простые числа, назвать несколько первых из них и определить, простое число или нет. Вот и Агниджо заинтересовался простыми числами в очень раннем возрасте, а заодно и кое-какими из нерешенных проблем вокруг них. А со временем этот интерес привел к увлечению другими великими тайнами теории чисел.
Простые числа – это еще и своего рода атомы числовой вселенной, из которых строятся все остальные натуральные числа. Казалось бы, есть все основания надеяться, что они будут подчиняться строгим законам – и предсказывать, где именно в числовом ряду появится следующее, не будет составлять никакого труда. Но нет, эти математические кирпичики поразительно непослушны и капризны. Именно это противоречие между ожиданием и реальностью, стойкое ощущение, что некие организующие принципы чрезвычайной важности находятся за пределами нашего разумения, не давало покоя математикам с античных времен.
Читать дальше
Конец ознакомительного отрывка
Купить книгу