Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первые несколько простых чисел – это 2, 3, 5, 7, 11, 13, 17, 19, 23 и 29. Все числа, не относящиеся к простым, называют составными. Само число 1 простым не считается (а могло бы), поскольку иначе возникли бы сложности с рядом полезных теорем, в том числе с той, которая настолько важна, что ее величают “основной теоремой арифметики”. Она гласит, что любое число можно представить в виде произведения простых чисел единственным способом (если не учитывать порядок следования множителей). Например, 10 = 2 × 5, а 12 = 2 × 2 × 3. Если бы единица считалась простым числом, то таких способов было бы бесконечное множество – ведь можно сколько угодно раз последовательно умножать число на единицу, результат от этого не изменится.

В природе простые числа встречаются в самых удивительных и неожиданных местах. Один из видов цикад, Magicicada septendecim , имеет 17-летний жизненный цикл. Все особи этого вида проводят в стадии личинки ровно семнадцать лет, после чего вся популяция одновременно вылупляется из своих оболочек для спаривания. Другой вид, Magicicada tredecim , имеет 13-летний жизненный цикл. Существует множество теорий, почему в процессе эволюции у этих цикад выработался жизненный цикл, выражающийся простым числом лет. Самая популярная заключается в том, что существовал хищник, тоже появлявшийся раз в определенное количество лет. Если бы цикады достигали зрелости в один год с питающимися ими животными, весь выводок этих насекомых, скорее всего, тут же уничтожался бы. Выживание цикад зависело от способности выработать жизненный цикл, минимально пересекающийся с циклом хищников. Если бы, например, цикл развития того или иного вида составлял пятнадцать лет, то хищники вполне могли бы появляться каждые три года или пять лет и пожирать выводок насекомых всякий раз при его вылуплении; либо появляться каждые шесть или десять лет и уничтожать новое поколение цикад через раз. И в том и в другом случае данный вид цикад в скором времени просто вымер бы. Другое дело, когда жизненный цикл цикад длится семнадцать лет: хищники с более короткой продолжительностью жизни (а по имеющимся данным, гипотетические хищники жили не так долго, как цикады) шестнадцать своих циклов не будут заставать время появления лакомой добычи и в конце концов просто вымрут от истощения. Такие хищники давно бы уже исчезли с лица земли, оставив цикад с их жизненным циклом, выражающимся простым числом лет, живыми-здоровыми.

Цикада Известно что количество простых чисел бесконечно то есть не - фото 21

Цикада.

Известно, что количество простых чисел бесконечно, то есть не существует самого большого простого числа. Евклид доказал это еще две тысячи лет назад. Другое, но очень простое доказательство таково: предположим, что ряд простых чисел не бесконечен. Тогда можно было бы все простые числа перемножить: 2 × 3 × 5 × 7 и так далее, вплоть до самого большого из них. Обозначим получившееся гигантское произведение буквой P и прибавим к нему 1. Теперь у нас есть только два варианта: либо число P + 1 простое, либо оно делится на какое-либо другое, меньшее простое число. Но если разделить P + 1 на любое из простых чисел в нашем списке (а он, как мы условились, включает в себя все существующие простые числа), в остатке всегда останется 1. Это значит, что либо число P + 1 тоже простое, либо оно имеет простой делитель, которого нет в списке. Таким образом, начав с предположения, что существует некое наибольшее простое число, мы пришли к противоречию. В логике и математике этот прием называется “доказательством от противного” (частный случай “доведения до абсурда”, reductio ad absurdum ) – когда несостоятельность какого-либо утверждения доказывают, демонстрируя абсурдность его следствий. Значит, исходное предположение неверно, а стало быть, истинно противоположное ему утверждение: существует бесконечное множество простых чисел. Это последнее утверждение называется теоремой Евклида.

В древности математикам нелегко было высчитывать простые числа. В классической Греции точно знали, что 127 – простое, так как это вытекает из “Начал” Евклида. Возможно, были известны и другие, бо́льшие простые числа – до нескольких сотен, а то и тысяч. В эпоху Возрождения были найдены и существенно бо́льшие, среди них и 524 287, рассчитанное математиком Пьетро Катальди из Болоньи, известным охотником за простыми числами. После публикации трудов французского монаха XVII века Марена Мерсенна, посвятившего немало лет изучению чисел вида 2 n – 1, где n – натуральное (называемых сегодня “числа Мерсенна”), поиск простых чисел сосредоточился именно в этом направлении. Числа Мерсенна – главные подозреваемые, поскольку вероятность, что любое выбранное наугад число из их ряда окажется простым, гораздо выше, чем у других случайных нечетных чисел аналогичной величины (хотя далеко не все числа Мерсенна простые). Первые несколько простых чисел Мерсенна (то есть чисел Мерсенна, которые одновременно являются простыми) – это 3, 7, 31 и 127. Находка Катальди – это девятнадцатое из чисел Мерсенна ( M 19) и седьмое из простых чисел Мерсенна. Прошло почти полтора столетия, прежде чем швейцарский математик Леонард Эйлер нашел в 1732 году большее простое число. Еще полтора века спустя, в 1876 году, рекорд поставил Эдуард Люка, доказавший, что 127-е число Мерсенна ( M 127), равное приблизительно 170 ундециллионам [32] Ундециллион – это триллион триллионов триллионов, или 10 36 . – Прим. науч. ред. , также является простым.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x