Представить себе, как может звучать внеземная музыка, пытались и ученые, и писатели. В фильме “Близкие контакты третьей степени” инопланетяне использовали в качестве приветствия последовательность из пяти нот мажорной гаммы: “ре – ми – до – до (на октаву ниже) – соль”. По сценарию они, возможно, делали это потому, что слушали земную музыку и хотели, чтобы мелодия звучала знакомо. А может быть, другие цивилизации нашей галактики придут к тем же музыкальным строям, что и мы, поскольку с точки зрения математики они самые простые и из них получаются самые красивые мелодии и гармонии, где бы ты ни рос – на Земле или на четвертой планете какой-нибудь звезды в 40 000 световых лет отсюда. Ведь если математика универсальна, то столь же универсальны (со множеством вариаций) могут быть и основы музыки, в том числе музыкальные строи и принципы настройки инструментов. Есть, например, некий элемент неизбежности в появлении равномерно темперированного строя: любые разумные существа, желающие добиться гармоничного совместного звучания разных музыкальных инструментов независимо от тональности, рано или поздно придут к чему-то подобному.
Если (или когда) люди наконец смогут установить контакт с другими разумными существами, есть шанс, что произойдет это посредством музыки. И идея эта не нова. В XVII веке английский священник Фрэнсис Годвин, епископ Херефорда, написал книгу “Человек на Луне” (опубликованную посмертно в 1638 году), герой которой, бесстрашный астронавт Доминго Гонсалес, встречается с жителями Луны, общающимися на музыкальном языке. В основе идеи Годвина лежит описание устной китайской речи с ее тонами, составленное миссионерами-иезуитами, незадолго до того вернувшимися в Европу. В книге Годвина буквам алфавита лунных жителей соответствуют разные ноты.
В 1960-х годах немецкий радиоастроном Себастьян фон Хорнер, опубликовавший множество работ по проблеме поиска внеземного разума, отстаивал использование музыки как средства межзвездной коммуникации. Инопланетная музыка, считал он, с очень высокой вероятностью может напоминать земную. В многоголосной музыке (когда одновременно звучат две ноты или более), где бы она ни зародилась, есть лишь ограниченное количество способов заставить голоса звучать гармонично. Модуляции – переходы из одной тональности в другую – возможны только при условии, что октава разделена на равные части и соответствующие тона имеют частоты, находящиеся в определенном математическом соотношении. Западная музыка пришла к компромиссу в виде двенадцатиступенного равномерно темперированного строя. Тот же строй, предполагал фон Хорнер, может появиться и в музыке иных цивилизаций, как и еще пара неплохих компромиссных звукорядов: пятиступенный и тридцатиодноступенный. О последнем в XVII веке много писали ученые, в том числе астроном Христиан Гюйгенс: по их мнению, такой строй оптимален для существ, обладающих более чувствительной, чем наша, слуховой системой. Тем же из обитателей далеких планет, кого природа не наделила хорошей способностью различать близкие по высоте звуки, лучше подойдет пятиступенный равномерно темперированный строй.
Часто считают, что первое послание, которое мы получим из других миров, будет научным или математическим. Но разве можно себе представить приветствие лучше, чем хорошая музыка – не только имеющая логическую основу, но и наполненная чувствами и эмоциями ее создателей?..
Глава 7. Тайны простых чисел
Математики уже давно тщетно пытаются найти какую-то закономерность в последовательности простых чисел, и у нас есть основания полагать, что эту тайну человеческий разум не сумеет разгадать никогда.
Леонард Эйлер
Возможно, самая важная на сегодня задача для математиков – это гипотеза Римана.
Эндрю Уайлс
Простое число – это всего лишь натуральное число, которое делится без остатка только на само себя и на единицу. Казалось бы, ничего особенного в таком свойстве нет, и тем не менее простые числа в математике – на особом положении. Не будет преувеличением сказать, что простые числа связаны с некоторыми из величайших неразгаданных тайн в этой науке и играют важную роль в нашей повседневной жизни. Например, каждый раз, когда вы пользуетесь кредитной карточкой, компьютеру банка нужно удостовериться, что вы ее владелец. Делает он это с помощью алгоритма, который превращает очень большое число в однозначно определяемое произведение двух заранее известных простых множителей. От решения таких странных задачек во многом зависит наша финансовая безопасность.
Читать дальше
Конец ознакомительного отрывка
Купить книгу