Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Число называется простым если у него есть ровно два разных делителя единица - фото 48

Число называется простым, если у него есть ровно два разных делителя – единица и само это число. Числа, не являющиеся простыми, называют составными. Вот несколько первых простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47… Их список продолжается и дальше. Если вы внимательно прочитаете определение простого числа, вы поймете, почему в этот список не входит число 1.

Простые числа – это кирпичики, из которых строится вся популяция чисел, так как любое составное число может быть представлено одним, и только одним, способом в виде произведения простых чисел, причем любое простое число может входить в это произведение более одного раза.

Например: 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3².

Тем, кто не считает себя членом сообщества математиков, тот факт, что любое число может быть представлено в виде одного, и только одного, произведения простых сомножителей, кажется совершенно очевидным. Однако для математиков этот факт не вполне ясен: им приходится его доказывать. Не следует, однако, обвинять математиков в излишней педантичности; в прошлом было такое множество положений, которые казались «совершенно очевидными», а потом оказались – и это было доказано – ложными, что математики категорически решили, что любое и каждое утверждение должно быть подтверждено доказательством. Можно предположить, что сложение множества нулей непременно дает нуль, но, как вы увидите далее в этой книге, сумма нулей не всегда бывает равна нулю, а если уж нельзя доверять нулям, то кому вообще можно доверять?

Но я отвлекся. Вернемся к теме простых чисел.

Первое, что мы можем спросить, завязывая с простыми числами отношения, которые мы собираемся заботливо развивать, это: «Сколько всего существует простых чисел?»

Ответ на этот вопрос первым нашел греческий математик Евклид, отец теоретической геометрии. С Евклидом знаком любой, кто изучал геометрию, – где бы и когда это ни происходило. Все мы заучивали постулаты (аксиомы) Евклида: что через любые две точки можно провести одну, и только одну, прямую или что две параллельные прямые никогда не пересекаются. Собственно говоря, классическая геометрия носит его имя – она называется евклидовой геометрией. И, хотя Евклид разрабатывал свою геометрию более 2000 лет назад, ее до сих пор преподают в точности так, как он ее записал. Можно ли представить себе, чтобы биологию, или химию, или физику преподавали, используя только знания, полученные более 2000 – или даже 200 – лет назад?

Евклидова геометрия оказала сильнейшее влияние на лучшие умы человеческой цивилизации, одним из которых был величайший из философов, Барух Спиноза. Евклидовы методы построения геометрии на основе аксиом и базовых концепций настолько впечатлили Спинозу, что он применил этот подход в главной своей работе, «Этике». Разумеется, Спиноза не говорит в своей книге о точках и прямых. Он рассуждает о концепции Бога и о месте человека в мироздании. Но для представления своих доводов он использует чисто евклидовские методы: Спиноза излагает основополагающие концепции, формулирует конкретные аксиомы, а затем использует их для доказательства теорем. Более того, главное произведение Спинозы называется в латинском оригинале Ethica ordine geometrico demonstrata (хотя эту книгу часто называют просто «Этикой»; точный перевод латинского названия – «Этика, доказанная в геометрическом порядке»).

Но вернемся к Евклиду. Прежде чем мы посмотрим его ответ на вопрос «сколько существует простых чисел?», давайте немного подумаем самостоятельно.

Прежде всего нам необходимо определить, конечно или бесконечно количество простых чисел.

Если их количество конечно, то каково самое большое простое число?

Если же простых чисел бесконечно много, можно ли это доказать?

Можно ли представить себе, что некое действительно огромное, необычайно большое число не делится нацело ни на что, кроме единицы и самого себя, и, следовательно, считается простым числом?

Существует ли формула, которую можно использовать для получения всех простых чисел?

ТЕОРЕМА ЕВКЛИДА

Существует бесконечно много простых чисел.

Я приведу два доказательства этой теоремы. Одно из них кратко и подчеркивает красоту великой идеи Евклида. Второе доказательство, по сути, сводится к тому же, но оно длиннее и помогает подробно объяснить более краткое доказательство.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x