Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А это подводит нас к третьему уровню: только если понять, почему нечто происходит, – например разложив камни квадратом, – можно исключить всякую возможность ошибки.

Скажи мне – и я забуду. Научи меня – и я запомню. Дай мне сделать – и я пойму.

Китайская мудрость

Подход Пифагора нравится мне тем, что он дает знание третьего рода. Я понимаю, почему выражения верны, на более глубоком уровне. Я не могу проверить все бесконечное количество случаев применения формулы, но, если я получу глубокое понимание происходящего, я пойму, почему эта формула истинна.

Однажды мне попалась в библиотеке книга русского математика Якова Успенского (1883–1947) под названием «Теория уравнений» (Theory of Equations, 1948). Он работал в Стэнфордском университете под именем Джеймс Успенский. Успенский доказал множество разнообразных формул тем же путем, каким доказывал Пифагор, – то есть при помощи иллюстраций.

Начну с весьма простого примера.

Если сложить все числа от 1 до n , результат будет равен

Следующий чертеж объясняет почему эта формула действует для случая n 4 - фото 27

Следующий чертеж объясняет, почему эта формула действует для случая n = 4.

Сумма чисел от 1 до 4 равна половине площади прямоугольника другими словами ½ - фото 28

Сумма чисел от 1 до 4 равна половине площади прямоугольника; другими словами, ½ × 4 × 5 = 10.

Ну хорошо, для n = 4 все просто. А что происходит с более крупными числами?

Существует хитрый способ вычисления суммы последовательных чисел от 1 до, скажем, 100. Этот способ тесно связан с историей, главный герой которой – маленький мальчик. Разные страны и народы спорят о том, кто именно был этим мальчиком. Русские утверждают, что это был математик Николай Лобачевский, «Коперник геометрии», и было ему тогда семь лет. Евреи говорят, что это был Барух Спиноза, но возраст называют такой же. Немцы называют героем этого повествования выдающегося математика – на самом деле одного из величайших во всей истории математики – К. Ф. Гаусса (в честь которого, что неудивительно, названа колоколообразная кривая – гауссиана) в шестилетнем возрасте. Немало и таких родителей, которые утверждают, что это произошло с их собственным ребенком.

Поскольку мы только что познакомились на страницах этой книги со Спинозой, я выберу его.

Так вот, однажды маленький Барух сидел на уроке и очень, очень скучал. Но беда была не только в том, что ему было скучно, а еще и в том, что из-за этого он шалил и мешал учителю вести урок. Учитель решил дать мальчику какую-нибудь задачу, которая займет его на долгое время, и велел Баруху сложить все числа от 1 до 100. «Этого ему хватит по меньшей мере до конца урока», – решил учитель.

Но его ожиданиям не суждено было сбыться. Не успел учитель повернуться к доске, как Барух сказал: «Учитель, ответ – 5050».

Мы можем предположить, что Барух еще не был знаком с приведенной выше формулой (он был слишком мал). Как же ему удалось так быстро сосчитать эту сумму?

1 + 2 + 3 + 4 + … + 98 + 99 + 100 =?

Ответ оказывается очень простым и к тому же очень изящным. Барух не стал складывать все числа по порядку: он заметил, что можно сложить первое число с последним (1 + 100 = 101), второе – с предпоследним (2 + 99 = 101), третье – с третьим с конца (3 + 98 = 101) и так далее, вплоть до 50 + 51 = 101, и получить пятьдесят пар, сумма членов каждой из которых равна 101. После этого ему оставалось только умножить 50 на 101, а это очень легко сделать: 50 × 100 = 5000 плюс еще один раз 50, итого 5050.

Умно́, не правда ли? Если подумать об этом несколько секунд, можно понять, что метод маленького Баруха аналогичен Пифагоровой идее раскладывания камешков.

Привычка Пифагора преподавать с использованием камешков также объясняет, почему мы называем некоторые числа «квадратными», «треугольными», «кубическими» и так далее. Он просто давал этим числам названия, соответствующие их геометрическим представлениям.

Например, как можно видеть из иллюстрации, числа 1, 4, 9, 16, 25… – «квадратные»:

Числа 1 3 6 10 15 треугольные А числа 1 5 12 пятиугольные - фото 29

Числа 1, 3, 6, 10, 15… – «треугольные»:

А числа 1 5 12 пятиугольные Вернемся к треугольным числам Теориялюбое - фото 30

А числа 1, 5, 12… – пятиугольные.

Вернемся к треугольным числам Теориялюбое треугольное число от 3 и выше - фото 31

Вернемся к треугольным числам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x