Ричард Фейнман - 7. Физика сплошных сред

Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

7. Физика сплошных сред: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 2. Тензор упругости

Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны дефор­мациям. В гл. 31 мы определили тензор напряжений S ij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая ком­понента S ijлинейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9X9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их C ijkl определив посредством уравнения

где каждый значок i j k и l может принимать значения 1 2 или 3 Поскольку - фото 385

где каждый значок i, j, k и l может принимать значения 1, 2 или 3. Поскольку коэффициенты С ijkl связывают один тензор с другим, они тоже образуют тензор — на этот раз тензор четвертого ранга. Мы можем назвать его тензором упругости.

Предположим, что все C ijkl известны и что к телу какой-то произвольной формы мы приложили сложные силы. При этом возникнут все сорта деформаций — тело как-то исказится. Каковы будут перемещения? Вы понимаете, что это довольно сложная задача. Если вам известны деформации, то из уравне­ния (39.12) можно найти напряжения, и наоборот. Но напряже­ния и деформации, которые возникли в любой точке, зависят от того, что происходит во всей остальной части материала.

Наиболее простой способ подступиться к такой задаче — это подумать об энергии. Когда сила F пропорциональна пере­мещению х, скажем F=kx, то работа, затраченная на любое перемещение х, равна kx 2 /2. Подобным же образом энергия w, запасенная в любой единице объема деформированного мате­риала, оказывается равной

Полная же работа W затраченная на деформацию всего тела будет интегралом от w - фото 386

Полная же работа W, затраченная на деформацию всего тела, будет интегралом от w по всему его объему:

Следовательно это и есть потенциальная энергия запасенная во внутренних - фото 387

Следовательно, это и есть потенциальная энергия, запасенная во внутренних напряжениях материала. Когда тело находится в равновесии, эта внутренняя энергия должна быть минималь­ной. Таким образом, проблема определения деформаций в теле может быть решена нахождением таких перемещений и по всему телу, при которых W минимальна. В гл. 19 (вып. 6) я го­ворил вам о некоторых общих идеях вариационного исчисле­ния, применяемого при решении задач на минимизацию подоб­ного рода. Однако сейчас мы больше не будем вдаваться в под­робности этой задачи.

Сейчас нас главным образом будет интересовать то, что можно сказать относительно общих свойств тензора упругости. Прежде всего ясно, что на самом деле в C ijkl содержится не 81 различный параметр. Поскольку S ij и e ij — симметричные тензоры, каждый из которых включает только шесть различных элементов, то C ijkl состоит максимум из 36 различных компо­нент. Обычно же их гораздо меньше.

Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:

т е всего 81 слагаемое Но кубический кристалл обладает определенными - фото 388

т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл по­вернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в нап­равлении оси х. Следовательно, если мы переменим наши опре­деления осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла

C хххх = С уууу =C zzzz . (39.16)

Мы можем еще показать, что компоненты, наподобие С ххху , должны быть нулями. Кубический кристалл обладает тем свой­ством, что он симметричен при отражении относительно любой плоскости, перпендикулярной к одной из осей координат. Если мы заменим у на —y, то ничего не должно измениться. Но из­менение у на - у меняет е xy на - е xy , так как перемещение в нап­равлении + у будет теперь перемещением в направлении - у. Чтобы энергия при этом не менялась, С ххху должно переходить в - С ххху Но отраженный кристалл будет тем же, что и прежде, поэтому С хх xy должно быть таким же, как и - С ххху . Это может произойти только тогда, когда оба они равны нулю.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «7. Физика сплошных сред»

Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «7. Физика сплошных сред»

Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x