Ричард Фейнман - 7. Физика сплошных сред

Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

7. Физика сплошных сред: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нас интересуют только малые изгибы обычная вещь в инженерных конструкциях - фото 348

Нас интересуют только малые изгибы (обычная вещь в ин­женерных конструкциях), поэтому квадратом производной (dz/dx) 2 можно пренебречь по сравнению с единицей и считать

Нам нужно еще знать изгибающий момент Он является функцией от х так как в - фото 349

Нам нужно еще знать изгибающий момент картинка 350. Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен

ибо это и есть момент сил относительно точки х с которым действует груз W т - фото 351

ибо это и есть момент сил относительно точки х, с которым действует груз W, т. е. груз, который должен поддерживать балку. Получаем

или Это уравнение можно проинтегрировать без всяких фокусов и получить - фото 352

или

Это уравнение можно проинтегрировать без всяких фокусов и получить - фото 353

Это уравнение можно проинтегрировать без всяких фокусов и получить

воспользовавшись предварительно нашим предположением что z00 и что dzdx в - фото 354

воспользовавшись предварительно нашим предположением, что z(0)=0 и что dz/dx в точке x=0 тоже равно нулю. Это и есть граничные условия. А отклонение конца будет

т е отклонение возрастает пропорционально кубу длины балки При выводе нашей - фото 355

т, е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резин­ку и вы сами убедитесь в этом. Если первоначально попереч­ное сечение было прямоуголь­ным, то, согнув резинку, вы уви­дите, как она выпирает у основания (фиг. 38.15).

Фиг 3815 Согнутая резинка а и ее поперечное сечение б Это получается - фото 356

Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).

Это получается потому, что, согласно отноше­нию Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/ 2, для резинки те оно близко к этому числу.

§ 5. Продольный изгиб

Теперь воспользуемся нашей теорией, чтобы понять, что про­исходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.

Фиг 3816 Продольно изогнутая балка Здесь стержень обычно прямой - фото 357

Фиг. 38.16. Продольно изогну­тая балка.

Здесь стержень, обычно прямой, удерживается в согнутом виде двумя проти­воположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.

Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент в точке Р на рисунке равен силе F умноженной на плечо перпендикулярное - фото 358в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:

Воспользовавшись выражением для момента 3836 имеем При малых - фото 359

Воспользовавшись выражением для момента (38.36), имеем

При малых отклонениях можно считать 1 Rd 2 ydx 2 отрицательный знак - фото 360

При малых отклонениях можно считать 1 /R=-d 2 y/dx 2 (от­рицательный знак выбран потому, что кривизна направлена вниз). Отсюда

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «7. Физика сплошных сред»

Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «7. Физика сплошных сред»

Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x