Ричард Фейнман - 7. Физика сплошных сред

Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

7. Физика сплошных сред: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

7 Физика сплошных сред - фото 333

Собирая теперь все воедино, находим

или Вы должно быть уже узнали что это такое это одномерное волновое - фото 334

или

Вы должно быть уже узнали что это такое это одномерное волновое уравнение - фото 335

Вы, должно быть, уже узнали, что это такое: это одномерное волновое уравнение. Мы получили, что волны кручения распространяются по стержню со скоростью

Чем плотнее стержень при одной и той же жесткости тем медленнее движется - фото 336

Чем плотнее стержень при одной и той же жесткости, тем мед­леннее движется волна, а чем он жестче, тем волна бежит бы­стрее. Скорость ее не зависит от диаметра стержня.

Волны кручения представляют частный случай волн сдвига. Волны сдвига в общем случае — это такие волны, при которых деформация не изменяет объема любой части материала. В вол­нах кручения мы сталкиваемся с особым распределением нап­ряжений сдвига — они распределены по кругу. Но волны при любом распределении напряжений сдвига будут распростра­няться с одной и той же скоростью, которая определяется фор­мулой (38.32). Сейсмологи, например, обнаружили, что такие волны сдвига распространяются и внутри Земли.

В мире упругих явлений возможен и другой сорт волн внут­ри твердого материала. Если вы толкнете что-нибудь, то можете возбудить «продольные» волны, так называемые волны «сжа­тия». Они подобны звуковым волнам в воздухе или в воде, т. е. перемещение вещества в них происходит в ту же сторону, что и распространение волны. (На поверхности упругого тела мо­гут распространяться и другие типы волн, называемые «вол­нами Рэлея». Деформация в них ни продольная, ни поперечная. Однако у нас нет времени говорить о них подробно.)

Раз уж мы коснулись вопроса о волнах, то какова скорость волн чистого сжатия в большом твердом теле, подобном Земле? Я сказал в «большом», ибо скорость звука в массивном теле отлична от скорости, свойственной, скажем, тонкому стерж­ню. Под массивным телом я подразумеваю тело, поперечные раз­меры которого много больше длины волны звука. Поэтому, нажимая на такой объект, можно обнаружить, что он не «раз­дается» в стороны — он может сжиматься только в одном нап­равлении. К счастью, однако, мы уже разобрали специаль­ный случай сжатия «сдавленного» упругого материала, а в гл. 47 (вып. 4) мы познакомились еще со скоростью звука в газе. Рас­суждая так же, как и выше, вы можете убедиться, что скорость звука в твердом теле равна Ц(Y'/r), где Y' — «продольный мо­дуль», т. е. давление, деленное на относительное изменение длины (для случая «сдавленного» стержня). Равно это просто отношению D l/l к F/A, полученному нами в уравнении (38.20). Таким образом, скорость продольных волн определяется выра­жением

Поскольку значение s заключено между 0 и 1 2 то модуль сдвига m меньше модуля - фото 337

Поскольку значение s заключено между 0 и 1/ 2, то модуль сдвига m меньше модуля Юнга Y, a Y', кроме того, больше Y, так что

m< Y

Это означает, что продольные волны распространяются быстрее, чем волны сдвига. Один из наиболее точных способов определе­ния упругих постоянных вещества дает измерение плотности материала и скоростей двух сортов волн. Из этой информации можно получить как Y , так и s. Кстати, именно измеряя раз­ность во времени прихода двух сортов волн от землетрясения, сейсмологи только по сигналам, принятым одной станцией, способны установить расстояние до эпицентра.

§ 4. Изгибание балки

Разберем теперь другой практический вопрос — изгибание балки, стержня или бруска. Чему равны силы, необходимые для изгибания балки произвольного поперечного сечения?

Мы определим эти силы для балки круглого сечения, но ответ будет пригоден для балки любой формы. Чтобы сберечь время, мы кое-где упростим дело, так что теория, которую мы разовьем, будет только приближенной. Наши результаты верны лишь при том условии, что радиус изгиба­ния много больше толщины балки.

Представьте, что вы ухватились за оба конца прямой балки и согнули ее в виде кривой, похожей на ту, что изображена на фиг. 38.11.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «7. Физика сплошных сред»

Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «7. Физика сплошных сред»

Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x