Мне еще хотелось бы порассуждать немного о том, почему при пропорциональности импульса поля скорости мы говорили о массе. Очень просто! Ведь масса — это и есть коэффициент между импульсом и скоростью. Однако возможна и другая точка зрения. Можно говорить, что частица имеет массу, если для ускорения ее мы вынуждены прилагать какую-то силу. Посмотрим повнимательней на то, откуда берутся силы; это может помочь нашему пониманию. Откуда мы узнаем, что здесь должно проявиться действие сил? Да просто потому, что мы доказали закон сохранения импульса для полей. Если у нас есть заряженная частица и мы некоторое время «нажимаем» на нее, то у электромагнитного поля появится импульс. Каким-то образом он был передан электромагнитному полю. Следовательно, чтобы разогнать электрон, к нему нужно приложить силу, дополнительную к той, которая требуется механической инерцией, связанную с его электромагнитным взаимодействием. При этом должна возникнуть соответствующая обратная реакция со стороны «толкаемого» нами электрона. Но откуда берется эта сила? Картина примерно такова. Можно считать электрон заряженной сферой. Когда он покоится, то каждый его заряженный участок отталкивает любой другой, но все силы уравновешены попарно, так что результирующая равна нулю (фиг. 28. 3, а).

Фиг 28.3. Сила действия ускоряющегося электрона благодаря запаздыванию не равна нулю.
Под dF мы подразумеваем силу, действующую на элемент поверхности da, а под d 2 F — силу, действующую на элемент поверхности da aсо стороны заряда, расположенного на элементе поверхности da b.
Однако при ускорении электрона силы больше не уравновешиваются, так как, чтобы электромагнитное влияние дошло от одного места до другого, нужно некоторое время. Например, сила, действующая на участок а (фиг. 28.3, б) со стороны участка b, расположенного на противоположной стороне, зависит от положения b в запаздывающий момент. И величина и направление силы определяются движением заряда. Если он ускоряется, то силы, действующие на разные части электрона, могут быть такими, как это показано на фиг. 28.3, в. Теперь при сложении всех этих сил они не сокращаются. Для постоянной скорости эти силы уравновешивались бы, хотя на первый взгляд кажется, что даже при равномерном движении запаздывание приведет к неуравновешенным силам. Тем не менее оказывается, что в тех случаях, когда электрон не ускоряется, равнодействующая сила равна нулю. Если же мы рассмотрим силы между различными частями ускоряющегося электрона, то действие и противодействие не компенсируют в точности друг друга и электрон действует сам на себя, стараясь уменьшить ускорение. Он тянет сам себя «за шиворот» назад.
Можно, хотя и не легко, вычислить эту силу самодействия, однако здесь мы не будем заниматься такими трудоемкими расчетами. Я просто скажу вам, что получается в специальном сравнительно простом случае движения в одном измерении, скажем вдоль оси х. Самодействие в этом случае можно записать в виде ряда. Первый член этого ряда зависит от ускорений х, следующий — пропорционален х и т. д.
Так что в результате

(28.9)
где a и g — числовые коэффициенты порядка единицы. Коэффициент ос при слагаемом x зависит от предположенного распределения зарядов; если заряды равномерно распределены по сфере, то a= 2/ 3. Таким образом, слагаемое, пропорциональное ускорению, изменяется обратно пропорционально радиусу электрона а, что в точности согласуется с величиной, полученной для m эм в (28.4). Если взять другое распределение, то а изменится, но в точности так же изменится и величина 2/ 3в (28.4). Слагаемое с х не зависит ни от радиуса а, ни от предположенного распределения заряда; коэффициент при нем всегда равен 2/ 3. Следующее слагаемое пропорционально радиусу а и коэффициент g при нем определяется распределением заряда. Обратите внимание, что если устремить радиус электрона к нулю, то последнее слагаемое (равно как и все высшие члены) обратится в нуль, второе остается постоянным, но первое — электромагнитная масса — становится бесконечным. Видно, что бесконечность возникает из-за действия одной части электрона на другую; по-видимому, мы допустили глупость — возможность «точечного» электрона действовать на самого себя.
Читать дальше