Ричард Фейнман - 6a. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6a. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6a. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6a. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6a. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6a. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6a Электродинамика - изображение 389

6a Электродинамика - изображение 390

А такой интеграл (для v<<���с) мы только что вычисляли, чтобы найти энергию; он равен q 2 /16p 2 e 0 2 a, так что

или

6a Электродинамика - изображение 391

(28.3)

Импульс поля, т. е. электромагнитный импульс, оказался пропорциональным v. В частности, тоже самое выражение полу­чилось бы для частицы с массой, равной коэффициенту пропор­циональности при v. Вот почему этот коэффициент пропорциональности мы можем назвать электромагнитной массой m эм , т. е. положить

§ 3. Электромагнитная масса

Откуда же вообще возникло понятие массы? В наших зако­нах механики мы предполагали, что любому предмету присуще некое свойство, называемое массой. Оно означает пропорцио­нальность импульса предмета его скорости. Теперь же мы обнаружили, что это свойство вполне понятно — заряженная частица несет импульс, который пропорционален ее скорости. Дело можно представить так, как будто масса — это просто электродинамический эффект. Ведь до сих пор причина возник­новения массы оставалась нераскрытой. И вот, наконец, в элект­родинамике нам представилась прекрасная возможность понять то, чего мы никогда не понимали раньше. Прямо как с неба (а точнее, от Максвелла и Пойнтинга) свалилось на нас объяс­нение пропорциональности импульса любой заряженной ча­стицы ее скорости через электромагнитные свойства.

Но давайте все-таки встанем на более консервативную точку зрения и будем говорить, по крайней мере временно, что имеется два сорта масс и что полный импульс предмета должен быть суммой механического и электромагнитного импульсов. Причем механический импульс равен произведению «механической» массы m мехна скорость v. В тех экспериментах, где масса частицы измеряется, например, определением импульса или «кручением на веревочке», мы находим ее полную массу. Им­пульс равен произведению именно полной массы (m мех +m эм ) на скорость. Таким образом, наблюдаемая масса может состоять из двух (а может быть, и из большего числа, если мы учтем другие поля) частей: механической и электромагнитной. Мы знаем, что наверняка имеется электромагнитная часть; для нее у нас есть даже формула. А сейчас появилась увлекательная возможность выбросить механическую массу совсем и считать массу полностью электромагнитной.

Посмотрим, каков должен быть размер электрона, если «механическая» часть массы полностью отсутствует. Это можно выяснить, приравнивая электромагнитную массу (28.4) наблю­даемой массе электрона, т. е. m е . Получаем

6a Электродинамика - изображение 392

(28.5)

Величина

6a Электродинамика - изображение 393

(28.6)

называется «классическим радиусом электрона» и равна она 2,82X10 =13 см,

т. е. одной стотысячной диаметра атома.

Почему радиусом электрона названа величина r 0, а не а? Потому что мы можем провести те же самые расчеты с другим распределением заряда. Мы можем взять его равномерно размазанным по всему объему шара или наподобие пушистого шарика. Например, для заряда, равномерно распределенного по всему объему сферы, коэффициент 2/ 3заменяется коэффициентом 4/ 5. Вместо того чтобы спорить, какое распределение правильно, а какое нет, было решено взять в качестве «номинального» ра­диуса величину r 0. А разные теории приписывают к ней свой коэффициент.

Давайте продолжим наше обсуждение электромагнитной теории массы. Мы провели расчет для v<<���с, а что произойдет при переходе к большим скоростям? Первые попытки вычисления привели к какой-то путанице, но позднее Лоренц понял, что при больших скоростях заряженная сфера должна сжиматься в эллипсоид, а поля должны изменяться согласно полученным нами для релятивистского случая в гл. 26 формулам (26.6) и (26.7). Если вы проделаете все вычисления для р в этом слу­чае, то получите, что для произвольной скорости v импульс умножается еще на 1/Ц(1- v 2 /c 2 ) , т. е.

287 Другими словами электромагнитная масса возрастает с увеличением - фото 394

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6a. Электродинамика»

Представляем Вашему вниманию похожие книги на «6a. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6a. Электродинамика»

Обсуждение, отзывы о книге «6a. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x