Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В начале XX века вопрос о природе атома – мельчайшей частицы вещества, являющейся носителем его свойств, – был одним из центральных в физике. Предлагаемые модели, будучи внутренне противоречивыми или не соответствующими эксперименту, одна за другой опровергались. И вот в 1913 году датский физик Нильс Бор (илл. 2, справа) предложил математически простую теорию атома, объясняющую существующие экспериментальные данные, однако основанную на столь необычных допущениях, что он сам назвал их постулатами.

4 Энергетическая диаграмма атома водорода Атом переходит из основного - фото 287

4. Энергетическая диаграмма атома водорода. Атом переходит из основного состояния в возбужденное путем поглощения фотона, энергия которого Δ E = hυ соответствует разнице между двумя энергетическими уровнями атома. Энергия выражается в электронвольтах (1 эВ = 1,6•10 –19Дж)

Атом по Нильсу Бору

Нильс Бор, предлагая свою модель атома, ничего не знал о принципе неопределенности, до открытия которого оставалось еще 14 лет. В модели Бора, как и в модели Резерфорда, электрон вращается вокруг ядра, подобно тому как Земля вращается вокруг Солнца, однако при этом электрон может двигаться только по определенным орбитам (илл. 5). Например, круговые орбиты возможны только в том случае, когда произведение импульса mv электрона на радиус его орбиты R (это произведение называют «моментом импульса») является кратным постоянной Планка:

mvR = nħ. (4)

5 Атом водорода в представлении Резерфорда и Бора в начале XX века Однако - фото 288

5. Атом водорода в представлении Резерфорда и Бора в начале XX века

Однако импульс электрона и радиус орбиты связаны также и тем обстоятельством, что действующая на электрон центробежная сила (см. главу 4, «Еще одна фиктивная сила: центробежная»), равная mv 2/ R , должна компенсировать силу электростатического притяжения. Для атома водорода, ядро которого состоит из протона, последняя равна – e 2/(4πε o R ). Отсюда уже можно найти радиусы R n–1 разрешенных орбит для каждого значения n . Так, для n = 1 находим уже знакомое нам значение R 0 , которое соответствует основному состоянию. Предоставим читателю самому вывести общую формулу, применимую к возбужденным состояниям электрона.

Модель Бора, разработанная в 1913 году, довольно хорошо описывала спектры излучения атомов (илл. 6), однако вскоре выявились и ее недостатки. Спустя десять лет теория Бора была концептуально расширена введением вероятностного описания нахождения электрона. Так оказалось, что значение R 0 (расстояние от электрона до ядра) в атоме водорода может считаться лишь некоей усредненной величиной; принцип неопределенности не позволяет четко определить расстояние между протоном и электроном.

6 Модель Бора позволяет объяснить спектр излучения атома водорода в видимой - фото 289

6. Модель Бора позволяет объяснить спектр излучения атома водорода в видимой области. Линии, расположенные вблизи длин волн излучения в 410, 434, 486 и 656 нм, соответствуют переходам на уровень, соответствующий n = 2 из возбужденных состояний n = 6, 5, 4 и 3 (см. илл. 4)

Вероятность нахождения

Предположим, что в какой-то момент нам удалось установить положение электрона. Можно ли предсказать его положение через секунду? Нет, поскольку знание положения электрона неизбежно привело бы к полной неопределенности его скорости. Ни один прибор, ни одна теория не смогли бы предсказать, куда направится электрон. Так что же делать?

Сменим стратегию и отметим точку пространства, в которой обнаружен электрон, затем еще одну точку – результат аналогичного измерения с другим электроном, и многократно повторим эту процедуру. Хоть и невозможно предсказать, где появится следующая отметка, все же их распределение следует некоему правилу. Плотность отметок, которая варьирует в зависимости от точки пространства, указывает на вероятность нахождения электрона во время измерения. Мы были вынуждены отказаться от описания движения электрона, но можем теперь определить вероятность его нахождения в каждой точке пространства. Поведение электрона в наномире характеризуется вероятностью!

Читатель, не знакомый с этой концепцией, не может оценить роль случайности в законах природы. Эйнштейн, являясь одним из основателей квантовой физики (илл. 7), был потрясен предложенной концепцией квантового индетерминизма. Убежденный детерминист, он однажды написал Максу Борну: «Бог не играет в кости» [28] Бор ответил: «Не наше дело предписывать Богу, как ему следует управлять этим миром!» . Тем не менее, как вы увидите, такая вероятностная теория подтверждается серьезными экспериментальными доказательствами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x